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Let G be a compact group, 1 < p < oo, and A be a Banach
algebra. Define B?((G, A) to be the set of all functions, f: G —
A, such that S [ f@)||» d& < co. Similarly define C(G, A)
to be the set ofG all continuous functions from G to A, These
sets form Banach algebras under the usual operations and
convolution multiplication. This paper studies general pro-
perties of these algebras and in particular the inheritance of
properties, such as structure, from the image algebra A.
The techniques used, in part, involve certain topological tensor
products, and the discussion is generalized to the context of
more general topological tensor products,

In [9] it is seen that when A is an H*-algebra, a natural gen-
eralization of LX), BXG, A) is also an H*-algebra, and the structure
is determined accordingly. In this paper we consider natural general-
izations of L?(@), viz., dual and annihilator algebras. In § 1 we review
the basic properties of these algebras and discuss some new results.
In § 2 we discuss basic properties of the algebras B*(G, A) and C(G, A).
In § 3 we discuss topological tensor products and relate them to our
present problems. Finally in §4 we examine questions concerning the
structure of the above algebras and more generally determine the
structure of a suitably normed tensor product of semisimple annihilator
Banach algebras.

1. Preliminary ideas. For a subset, S, of an algebra, A, we
will let &(S) ={aecA:a-S=(0)} and <Z(S)={acd:S-a=(0).
if &2(8S) = & (S), we will denote this set by .o7(S). <(S) and <Z(S)
are respectively called the left and right annihilator of S, and &7 (S)
is called the annihilator of S.

DEFINITION. A topological algebra, 4, is said to be an annihi-
lator algebra if for an arbitrary closed left ideal IS A and closed
right ideal JS A the following conditions are satisfied:

(a) “ZU)=(0)if and only if I = A,

(b) 2(J) = (0) if and only if J = A,

A is said to be a dual algebra if

() F(#2I)=1

(b) #(F(J)=.

It is easily seen that every dual algebra is an annihilator algebra
It has recently been shown however [1] that the converse is not in
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general true. For semisimple Banach algebras though, this is still an
open question.

We will restrict our discussion to the consideration only of semi-
simple annihilator and dual Banach algebras. *‘Semisimplicity’’ is
taken to mean the vanishing of the Jacobson radical. We shall also
have occasion to discuss strong semisimplicity, i.e., the vanishing of
the strong radical, which is the intersection of all modular maximal
ideals of A.

The structure of semisimple annihilator and dual Banach algebras is
well-known and is as follows (cf. [13], [2]): every semisimple annihilator
Banach algebra, A, is the direct topological sum of all of its minimal
closed ideals. Each of these minimal closed ideals is a topologically
simple (i.e., (0) is the only proper closed ideal) annihilator algebra. If
A is a dual algebra, these minimal closed ideals are also dual algebras.
Every topologically simple, simisimple annihilator Banach algebra
is continuously isomorphic to an algebra of operators on a reflexive
Banach space. In addition, this algebra of operators contains the
algebra of all bounded operators of finite rank as a uniformly dense
subalgebra. Whether or not a distinction must be made between
topologically simple, semisimple annihilator Banach algebras and topol-
ogically simple, semisimple dual Banach algebras seems to be still an
open question.

In [9] it is shown that for an H*-algebra, A, the following
conditions are equivalent:

(1) Every minimal closed ideal of A is finite-dimensional.

(2) A is strongly semisimple,

(3) A is completely continuous (i.e., all left and right regular
representation operators on A are compact.)

We now note that many of these implications hold in a more
general context.

First of all, Kaplansky shows ([12], p. 699) that if A is a semi-
simple, completely continuous Banach algebra, then any minimal closed
ideal that A may possess must be finite-dimensional. For semisimple
annihilator Banach algebras, we can prove the following related
result:

ProposiTiON 1. Let A be a semisimple annihilator Banach algebra.
If every minimal closed ideal of A is finite-dimensional, then A is
completely continuous.

Proof. Let {I,} be the collection of minimal closed ideals of A.
Under the given conditions, the left (right) regular representation
operator on A corresponding to each element of >, I, is seen to
be of finite rank. Also since >, I, is dense in A and the left
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(right) regular representation is continuous, the left (right) regular
representation operator corresponding to any element of A is the
uniform limit of operators of finite rank and thus is compact.

In this paper we will have occasion to refer to some classes of
Banach algebras that have been studied but apparently have not been
designated in any special way. Therefore we make the following
definition:

DEFINITION. A Banach algebra is said to be a D*-(I*-) algebra
if it is a semisimple dual (annihilator) Banach algebra with a continu-
ous involution satisfying the condition:

a*a =0 implies a =0,

It should be remarked that several very important concrete
algebras are D*-algebras. For example, the algebra of all compact
operators on a Hilbert space is seen to be a D*-algebra if involution
is defined by the usual adjoint relation ([14], p. 283). Also if G is a
compact group and 1 < p < oo, then it is easily seen (cf. [12], p. 699)
that L?(G) and C(G) (with convolution multiplication) are D*-algebras
if involution is defined as usual.

ProrosiTioN 2. If A is a D*-algebra, then A is strongly semi-
simple if and only if every minimal closed ideal of A is finite-

dimensional.

Proof. Assume A is strongly semisimple, and let I be a minimal
closed ideal of A. I is known to be a topologically simple D*-algebra
([14], pp. 99, 100, and 267). Since I is an ideal of a strongly semi-
simple algebra, I is also strongly semisimple. But I being topologi-
cally simple requires that (0) be the only proper closed ideal. Thus
(0) must be a modular maximal ideal of I, i.e., in particular I must
have an identity element. This is true only if I is finite-dimensional
([14], p. 268).

Conversely assume that every minimal closed ideal of A is finite-
dimensional. Let I be any such ideal. Since A is a semisimple dual
algebra, F ) = #I) = ) (([14], p. 99). We will show first
that M = .27 (I) is a modular maximal ideal of A. As above, I is a
topologically simple D*-algebra, and thus I being finite-dimensional
implies I has an identity ([14], p. 268). Also it is true that IN M =
(0) and IP M is dense in A ([14], p. 99). Thus if ¢, is the restric-
tion to I of the canonical mapping @: A— A/M, ¢, is continuous
and one-to-one. Thus @) is dense in A/M. In fact, since [ is
finite-dimensional, @ (I) = A/M. As a result, since I has an identity,
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A/M must also have an identity, i.e., M is modular. That M is also
maximal follows directly from the fact that A is dual and I is a
minimal closed ideal in A.

Now if R, is the strong radical of A4, then R, is the intersection
of all modular maximal ideals of A, which in turn is contained in the
intersection of all modular maximal ideals of A that are annihilators
of minimal closed ideals of A. Thus since the direct sum of all
minimal closed ideals is dense in A, a short calculation (cf. [13], p.
317) shows that &7 (R,) = A. Therefore since A is a dual algebra,
R, = (0).

COROLLARY 1. If A is a D*-algebra, then A 1is strongly semi-
simple if and only if A is completely continuous.

COROLLARY 2. Commutative D*-algebras are strongly semisimple.

Proof. This result follows immediately from the above proposition
and ([14], p. 268).

COROLLARY 3. If G is a compact group and 1 < p < o, then
L*(G) and C(G) (with convolution multiplication) are strongly semi-
stmple and completely continuous.

Proof. The above proposition and ([12], p. 700) provide a new
proof to these well-known results.

2. The generalized group algebras, B?(G, A) and C(G, 4). For
the rest of this paper G will denote a compact topological group
with Haar measure, m, normalized so that m(G) =1. Also A will
denote a Banach algebra over the complex number field. In this
section we will study interrelations and general properties of algebras
that are natural generalizations of L?(G) (1 < p < o) and C(GR), viz.,
B?(G, A) and C(G, A).

DEerFINITION. For G, A, and p as above, we define B?(G, 4) to
be the space of all equivalence classes (modulo null functions) of

measurable functions f: G— A such that | || f(z)|[?dx < . We also
G

define C(G, A) to be the space of all continuous functions from G to
A.

We will make the usual abuse of the language and speak of the
functions in B?(G, A) rather than of the equivalence classes they
represent.
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If we define addition and scalar multiplicaion on the above spaces
to be the pointwise operations, and for fe B?(G, A) we define

A IR ECTE

and for fe C(G, A) we define || f ||. =sup {|| f(z) || : x € G}, then B*(G, 4)
and C(G, A) are Banach spaces. Moreover if multiplication is defined
on all of these spaces by convolution, then by a straight-forward
argument they are all seen to be Banach algebras. In the course of
verifying this one also notes that for 1 < ¢ < p <o, B?(G, 4) is
continuously isomorphic with an ideal of BY(G, A), and C(G, A) is conti-
nuously isomorphic with an ideal of B?(G, A) for all 1 < p <.

Furthermore, since G is a compact group and multiplication is
defined by convolution, we have the following result.

PropoSITION 3. A is isometrically isomorphic with an ideal of
C(G, A) or of B?(G, A) (1 < p < ).

COROLLARY. If for some compact group, G, and some 1l < p < oo,
B?(G, A) or C(G, A) is semisimple, then A is also semisimple.

It is conjectured that the converse is also true, i.e., if 4 is a
semisimple Banach algebra and if G is any compact group, then
Br(G, A) (1 £ p < =) and C(G, A) are also semisimple. In §4 of this
paper this result will be proven in some special cases. In [16] this
point is discussed in detail but at present no general proof nor counter-
example is known.

We can however somewhat reduce the problem of semisimplicity
via the following result.

ProposITION 4. Let G be a compact group and A be a Banach
algebra. If 1<p< « and 1= ¢ < «, then B*@, A) is semisimple
if and only if BY@G, A) is semisimple. Similarly B*(G, A) is semisimple
if and only if C(G, A) is semisimple,

Proof.
LEmMmA 1. If G, A, and p are as above, and {u,} is an approximate
identity of LPG) (comsisting say of continuous functions), then

lim, u.* f = f for every fe B*(G, A).

Proof. It is seen mutatis muiandis as in the case of scalar-
valued functions that u,xfe B*(@G, A) for every fe B*(G, A). [N.B.
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In the future, such results will be carried over from the scalar-valued
case to the vector-valued case without special mention.] Now consider
feB*(G, A) of the form

F=3fa el fie LG, (f()a)@) = fi@)a] .

For such f it is seen that lim (u.xf — f) = 0, but also the collection
of such f is dense in B?(G, A) (since for example it contains the simple
functions). As a result, lim,(u.xf — f) = 0 for every fe B*(G, A).

Notation. When we are considering annihilators of subalgebras,
and there may be some confusion about the algebra relative to which
the annihilator is being taken, we will use the following notation:
if X<V, then <Z,(X) is the right annihilator of X in Y. A similar
definition holds for &7, (X) and .7 (X).

LEMMA 2. Let G and p be as above, and let A be a Banach
algebra such that Z(A) = (0) (or Z(A) = (0)). Then if I is any
nonzero ideal 1n BYG, A), I N C(G, A) = (0).

Proof. Let g+ 0 be an element of I. If C(G)xg =(0) then
taking {u,} S C(G) to be an L*(G) approximate identity, we have
U xg = 0 for every . But by Lemma 1, limu,xg = g, i.e., g = 0,
which is a contradiction. Thus there is an f¢ C(G) such that fxg+0.
Note also that fx*xge C(G, A).

Now for any ac A, let fa be defined by (fa)(x) = f(x)-a, and
similarly define ag and a(f *¢g). Note that fa e C(G, A) and ag ¢ B*(G, A).
Also we see that a(f*g) = (fa)xg = f=(ag). Now if for every ac A,
a(f*g) =0, then since fxgeC(G, 4), A-(f*9)z) = (0) for every
xe€G. But then since ZZ,(A4) = (0), (f*g)Xx) = 0 for every x €@, i.e.,
f*g = 0 which is a contradiction. Thus there must be an ¢ € A such
that a(f*g) # 0. Finally, since I is an ideal in B*(G, A), (fa)xgel,
and also

fx(ag) e C(G)*B*(G, A) < C(G, A) .
Thus 0 = a(fxg)e I N C(G, A).

Now to prove Proposition 4, Assume p > ¢q. Thus B?*(G, A) is
an ideal of BYG, A), and as a result, if BYG,A) is semisimple, then
B*(G, A) is semisimple. To prove the converse, we note that since
B*(G, A) is an ideal of BYG, A), it is always true that

R, = B(G, ) N R,
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(where R, is the radical of B¥(G, A)). Thus if B?(G,A) is semisimple,
(0) = BY(G, A) N R,. Also in this case 4, as an ideal of B*(G, 4), is
semisimple, and thus <Z,(A) = (0). Therefore by Lemma 2, if R, =
(0), then (0)== C(@G, A)NR, =SB (G, A NR, =(). Thus R, must
equal (0).

It should be remarked that one of the initial motivations for this
paper was the determination of necessary and sufficient conditions for
the algebras B*(G, 4) and C(G, A) to be annihilator or dual algebras.
As an immediate corollary to Proposition 8, we see that if for some
compact group G and some 1 < p < =, BG, A) or C(G, A) is a semi-
simple dual Banach algebra, then A is a semisimple dual Banach
algebra ([14], p. 100). It has recently been shown [1] that not every
closed ideal of an annihilator algebra need be an annihilator algebra,
however it can be shown (cf. [16]) that if B*(G, A) or C(G, 4) is a
semisimple annihilator Banach algebra, then A must also be such.

The sufficiency of these conditions is discussed in § 4.

3. Topological tensor products. In this section we will discuss
certain topological tensor products. Since, as we will see, B*(G, A)
and C(G, A) are expressible as topological tensor products, such tensor
products present a direction for generalization of our discussion. Also
the realization that the generalized group algebras are topological
tensgor products provides a formalistic motivation for a determination
of their structure.

We use A’ to denote the dual Banach space of a Banach algebra,
A, For ac A, o/ e A, {a,a” denotes the action of ¢ and o’ on each
other.

DeriniTiON., If A and B are Banach algebras, and {a,},», S A,
{b;};2, € B, then these sequences give rise to a bounded complex-valued
bilinear form, T, defined on A’ x B’ by

T(a!, b) = 3, <as, 'y by, b .

We will symbolically denote T by 3% a;®b; and write T ~ 3.,%.a, & b;.
(We may sometimes simplify the notation and speak of the “tensor”,
Sita; ®b;.) The algebraic temsor product of A and B, denoted
A B, is the vector space of all bilinear forms of the above type.
This definition of the algebraic tensor product of the algebras A
and B agrees with the usual definition of the algebraic tensor product

([4], p. 5).
We can next introduce a well-defined multiplication in 4 Q B by
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the formula: if

ﬂ~§m®m, ﬂ~§q®@,
then define

Tl'Tg ~ Ziziamj@bldj .
i=1j=

DEFINITION. If a is a norm on the tensor product, A Q B, we say
that « is a cross-norm if for every tensor, 7T, with representative of
the form a @ b, a(T) = ||a]|-[|b]|. We say that « is compatible with
multiplication if for every T, T, e AQ B, a(T,-T,) < a(T)-a(T,).

Since in general A& B may not be complete with respect to a
given cross-norm, «, (cf. [4], p. 8), we let A ®* B denote the normed
linear space, A Q B supplied with the & norm, and let 4 Q. B denote
the completion of 4 ®* B with respect to a.

We can now extend our definition of multiplication to A R, B
by taking limits. It is easily seen that if « is compatible with
multiplication on A® B it is also so on A&, B, and thus in this
case A ®, B, is a Banach algebra.

We are now in a position to relate topological tensor products to
our discussion of the generalized group algebras. In fact for a given
compact group, G, and some 1 < p < o, let M be a closed subalgebra
of L?(G). Also for a given Banach algebra, A, let N be a closed
subalgebra of A. Now consider M Q N with the “p-norm” defined by

ity <[, 115 maty o |
(where T ~ 33L m; @ n.).

We see as a result of the following proposition that |[|-][, is a
well-defined norm.

ProposITION 5. For G, A4, and p as above, L?(G) ® A is isomorphic
to a dense subalgebra of B?(@, A).

Proof. If T~ >, fi®a; is an element of L7 (G) R A, let
P(T) = 352 fi(+)a; (where (3.2 fi(+)a)(@) = 352 fi@)a;, and o(T)
is of course defined modulo null functions). Note that for every T,
o(T) e B*(G, A), and ¢ is linear. Thus to show ¢ is well-defined, i.e.,
independent of the choice of representative for T, it suffices to show
that T = 0 implies o(7T') = 0 (independent of the representative for
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T). Now ([4], p. 4) shows that 0 = T ~ 3,;», f: Q a; if and only if
one of the sets {f.}, {a;} is linearly dependent. Say {f;} is linearly
dependent and X273 A\, f; = f, (for some complex numbers, A;). Then
it is seen that T ~ >'7' f: ® (a; + Ma,) and also that S, fi(<)a; =
St fi(+)a; 4+ @), ice., T can be represented using one less term,
and the image of T is invariant under this change of representative.
Continuing in this manner we may reduce to a representative for T
of the form u & v with one of u or v equal to 0, and without
changing @(T). As computed with this last representative, o(T') = 0.

A straightforward computation shows that ¢ is multiplicative,
and an application of the above criterion for representatives of the
zero tensor shows that ¢ is one-to-one. That the image of ¢ is
dense in B*(G, A) follows from the fact that it contains the simple
functions.

Next we note that the “p-norm” as we have defined it on
LP(G) ® A is just the norm inherited by the above isomorphism. Thus
the “p-norm” is a well-defined norm on IL*(G) Q A. In fact, it is
easily seen to be a cross-norm on L*(G) ® A.

As an immediate result we have

ProPosITION 6. L°(G) Q, A is isomorphic and isometric to B*(G, A).

The above discussion allows us to settle immediately the problem
of determining necessary and sufficient conditions for B*(G, A) (1 <
p < o) and C(G, A) to be strongly semisimple,

ProposiTiON 7. B?(G, A) (or C(G, A)) is strongly semisimple if
and only if A is strongly semisimple.

Proof. Assume first A is strongly semisimple. Since for 1 < p < oo,
B*(G, A) and C(G, A) are ideals of BYG, A), it suffices to show that
BY@G, A) is strongly semisimple,

Grothendieck shows (]7], p. 59) that BY(G, 4) = LY(G) R, A, where
v is the greatest cross-norm. (For our purposes < is distinguished
by the fact that for Banach algebras, A and B, v may be defined as
a cross-norm on A K B, compatible with multiplication and such that
if « is any other cross-norm on A &® B, v = «.) Actually Grothendieck
discusses only the case of Banach spaces, but his discussion of the
above result is easily extended to Banach algebras. Grothendieck
([7], p. 185) also shows that L'(G) satisfies the condition of approxi-
mation. Finally, Gelbaum shows ([3], p. 538) that BYG, 4) is thus
strongly semisimple.

Since A is an ideal of all of the generalized group algebras, the
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converse is immediate.

Next let M be a closed subalgebra of L?(G) and N be a closed
subalgebra of A. M & N can be isomorphically embedded in L*(G) ® A
in the following manner. Let I be the subalgebra of L*(G)XR A
generated by all tensors having a representative of the form m @ »n
(where me M and ne N). For Tel, let T' be the restriction of
the bilinear form T to M’ x N’. The map +: T— T’ is seen to be
a well-defined isomorphism from I onto M @ N. Since the “p-norm”
as defined previously on M @ N is the same as the norm inherited
from I by this correspondence, the “p-norm” on M@ N is a well-
defined norm on M @ N. Note also that the p-norm on L?(G) ®Q A is
an extension of the p-norm of M @ N, i.e., for Te M Q NS L"(G) R A,
|| T, is independent of viewing Te M@ N or Te L*(G)  A.

DEFINITION. A norm, «, on the tensor product, A X B, of two
Banach algebras is of local character if for any closed subalgebras
McA, N&SB, «a on AR B is an extension of @« on M Q N, i.e.,
MR NS AR, B.

Thus the p-norm is of local character. There are norms that are
not always of local character. In fact the greatest cross-norm is such
a norm ([15], p. 53). Thus while LY(G)R, A = L'(G) K, A, it may
not be true that ¥ ®, N = M Q. N for all closed subalgebras M & LYG)
and N & A.

In addition to the above remarks, since the p-norm is compatible
with multiplication, we see that M @, N is a closed (left, right) ideal
in L*(G) ®, A if M and N are closed (left, right) ideals in L*(G) and
A respectively.

The above analysis can also be carried out for C(G) X A and
C(G, A), i.e., C(G)K A can be isomorphically mapped onto a dense
subalgebra of C(G, A). The norm on C(G) R A that equals the
inherited sup-norm of C(G, A) is the so called least cross-norm, A,
(7], p. 90). Thus C(G) ®; A is isomorphic and isometric with C(G,A4).
The A-norm can be defined on the algebraic tensor product, A& B,
of two Banach algebras as follows: let Te AQ® B, i.e., T is a bilinear
form from A’ x B’ to the complex numbers and of a special type. || T,
is defined to be the norm of T as a bilinear form. A is seen [15] to
be of local character, and in our case ) is compatible with multiplica-

tion, although this is not always true ([5], p. 80)

DEFINITION. A cross-norm, «, on the tensor product, A& B, of
two Banach spaces is said to be ordinary if < a <v on AR B.
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ProprosiTION 8. The p-norm is an ordinary cross-norm on L*(G) ® A.

Proof. Since the p-norm is a cross-norm, ||-||, < v for all p. To
show ||-]l, = \, wenote first thatif p = 1, |||, =7v=). If1<p< oo,
let T~ 3, fi Qa; be an element of L(G) R A and h, = 3%, fi(*)a;
be the corresponding element of B*(G, A). Now let ge L*(G) (1/p +
1/p’ =1) and o’ € A’. Then g(-)a’ € B”(G, A’) S [B*(G, A)]. Therefore

n

|79, @) | = | 5 <1 > <as 0|

=1

n

= 135((. sz )a, @]

i=1

- Sa ?:}fi(x)ai, g_(x—)a’>d;c

_ SG Chal®), TR dxf

[<hyy 9C)a> | < |l Br [l 1 9C)a [
=Tl llgll [l .

As a result

1T <1ITl, -

4. Structure theorems. In this section we will study the struc-
ture inherited by B?(G, A) and C(G, A) from A, and more generally
the structure inherited by certain topological tensor products from
the component algebras. The type of result we would like could
perhaps be modeled on the following results from [9]: a suitably
normed tensor product, A ®, B, of H*-algebras is again an H*-algebra,
and the minimal closed ideals of the tensor product are naturally
associated with the tensor product of minimal closed ideals of A and
B. [N.B. H*-algebras are D*-algebras, and their structure is accord-
ingly known and is relevant to the present discussion (cf. [14], pp
272-276)]. In particular, B¥G, A) is an H*-algebra if and only if A
is an H*-algebra, and the minimal closed ideals of B*G, A) are
associated with pairs of minimal closed ideals of L*G) and A. The
difficulty in directly carrying over the techniques used in proving the
above results to our present context of dual and annihilator algebras
arises from the fact that H*-algebras have more or less global
defining characterizations, but the presently known characterizations of
dual and annihilator algebras require some prior knowledge of the
structure of the algebras. Thus, for example, even though we know
B(G, A) = L*(G) ®, A, in trying to show directly that B(G, 4) is a
semisimple dual (annihilator) Banach algebra if A is such, we imme-
diately run into the following problems. If, say M is a closed right
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ideal in L?(G) and N is a closed right ideal in A, then M ®, N is a
closed right ideal in L?(G) ®, A. One might hope that (M ®, N) =
L (M)RQ, L (N), but in fact in general

LM, N)2{L M) K, A, L’ (G) Q, £ (N)}
;g(M)prg(N) *

Thus one does not have a good hold on the annihilators of ideals.
To make things even worse, the above example indicates that not
every closed one sided ideal of the tensor product need even be
expressible as the tensor product of closed ideals, e.g., consider
L (M &, N) above!

As a result, one soon abandons the attempt to classify the algebras
under consideration and approaches the problems of structure directly.

Unless otherwise noted, for the remainder of this section we will
let A and B be semisimple annihilator Banach algebras with collections
of minimal closed ideals {M,} and {N;} respectively. ¢ will denote a
cross-norm on A ® B that is compatible with multiplication and of
local character. For a Banach space, X, <#(X) will denote the Banach
algebra of bounded linear operators on X, We may also have occasion
to use terminology that has common though perhaps not universal
currency. We will attempt to follow the terminology of [14].

ProprosiTiON 9. If R is the radical of A®,B, then R =
ZL(AR. B) = Z(AR. B).

Proof. It obviously suffices to show RS ¥X(AQ.B) and
RS A(AQR,B). The same argument works for both cases so
congsider the first one. As a semisimple annihilator algebra, A has
minimal left ideals and each of these is of the form Ae, where e,* = e,
and e, Ae, is isomorphic to the complex numbers ([14], pp. 97 and 45).
Similarly B has minimal left ideals each of which is of the form Bf;
where f;* = f; and f;Bf, is isomorphic to the complex numbers. Now
for each pair (v, d), since ¢ is of local character, Ae, Q. Bf; may be
identified with (A&, B) (¢; Q f;) where (¢, R f3)* = ¢, Q f;, and (AR, B)
(e, X f;) is seen to be isomorphic to the complexes. It follows
then ([14], p. 46) that Ae, Q, Bf; is a minimal left ideal of 4 &, B.
Thus the left regular representation of AX,B on Ae, Q. Bf; is
irreducible, and its kernel is <~(Ae, Q. Bf;). But since A and B are
semisimple annihilator algebras, it is seen ([14], p. 100) that >}, Ae, =
A and >);Bf; = B where the sums are taken over all minimal left
ideals. Therefore

D (de, Q. Bf;) = AR, B,
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and letting
I = ﬂ (7s B)g(AeT ®c Bfﬁ) ’

we have as a result, IS (4 R, B). But by definition, R& 1.

COROLLARY. If A is a semisimple annihilator Banach algebra,
then B*(G, A) (1 £ p < =) and C(G, A) are semisimple.

Proof. It is readily seen that <7,(4) = (0) implies <~ (B*(G, A))=
(0) and similarly for C(G, A) (cf. [8], p. 24).

We see from § 3 that for every («, 8), M, Q. N; is a closed ideal
of AR, B, and since >, P M, is dense in A and > ;P N; is dense
in B, Y., oM, R, N;) is dense in A &, B.

ProposiTioN 10. If for every («, B), M, X, N; is a minimal closed
ideal of A ®, B and (A Q. B) = (0), then in fact every minimal closed
ideal of A ®, B is of the form M, &Q. N; for some («’, 5').

Proof. Let I be any minimal closed ideal of A ®, B. If
INM, Q. N;) = (0) for all (a,B), then I-(M,R.N;) = (0) for all
(a, B), but then I-(A &, B) = (0), which is impossible by hypothesis.
Thus IN(M, Q. N:) +# (0) for some («a',5). By minimality, I =
M, K. Ns then,

Thus the problem of determining the structure of A ), B essen-
tially reduces to determining when ideals of the form M, &, N; are
minimal closed ideals of A®,B, and in this case to then find a
concrete representation for these ideals. Since for every («, 8), M,
and N; are topologically simple, semisimple annihilator Banach algebras,
the first of the above problems would be solved if it could be
determined when a suitably normed tensor product of such algebras
is topologically simple.

In the following rather simple case both of the problems stated
above are easily solved. Also in light of § 1, there are some immediate
applications.

ProposiTion 11. If for every («a, 8) M, and N; are finite dimen-
sional then:

(1) M,Q.N; is a minimal closed ideal of 4 R, B.

(2) M,Q. N; is a finite-dimensional dual algebra.

(3) AQ.B is an annihilator algebra if and only if it is semi-
simple.
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(4) In the event that A and B have approximate identities,
A®. B is a dual algebras if and only if it is semisimple.

Proof. As a finite-dimensional simple annihilator algebra, M, =
#(X,) for some X,. Similarly N; = <#(X;). Therefore, M, Q. N;
is isomorphic and homeomorphic with the finite-dimensional, simple,
dual algebra Z (X, ®° Y;).

The necessity statements in (3) and (4) follow directly from
Proposition 9 and the definitions of “dual” and “annihilator algebras”.
The sufficiency statement in (3) follows from (2), the remark preceding
Proposition 10, and ([14], p. 106). The sufficiency statement in (4)
follows from these same results and the additional fact that since
A and B each have an approximate identity and ¢ is compatible with
multiplication, A Q. B has an approximate identity.

Notation. If 1S B*(G, A) let [I] denote the ideal generated by
I. If NS L*(G) and M= A let N(-)M = {f(-)a: f€ N, ac M}.

COROLLARY 1. If {Ng} is the collection of minimal closed ideals
of L*G) and if all minimal closed ideals, M, of a semisimple
annihilator Banach algebra, A, are finite-dimensional, then:

(1) B?@G, A) is a semisimple annihilator Banach algebra.

(2) Ewery ideal of BG, A) of the form [N,(-)M;] is @ minimal
closed ideal of B*(G, A) and a finite dimensional dual algebra.

(38) Ewvery minimal closed ideal of B*(G, A) is of the above form.

(4) B G, A) =S 5 @ (INCOIED.

If, in addition, A has an approximate identity, then B"(G, A) is a
dual Banach algebra.

COROLLARY 2. If A 1is a semistmple annihilator Banach algebra,
then B*(G, A) is completely continuous if and only tf A is completely
continuous.

COROLLARY 3. If A is any Banach algebra with an approximate
identity, then B?(G, A) is a strongly semisimple D*-algebra if and
only if A 1s a strongly semisimple D*-algebra.

Similar statements can be made for C(G, A).

One might hope that since the minimal closed ideals of L?(G)
are well-known, we could get almost as good results without requiring
that A have finite-dimensional minimal closed ideals. In fact, this is
the case. We notice (cf. § 1) that the minimal closed ideals of L?(G)
are topologically simple I*-algebras. These have been studied ([14],
pp. 267-270), and for convenience we present a summary of the results
most pertinent to our discussion. If M is such an algebra, then there
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is a family of “matrix units” {e,s}, in M with the properties:

( 1 ) e;"ﬁ = €pqas

(2) e.pe,, = 0p .5 (Where 0p, is the Kronecker delta).

(3) {e..} is a family of pairwise orthogonal, minimal Hermitian
idempotents.

(4) Me,, is a minimal left ideal of M, and e,, M is a minimal
right ideal of M for every «a. In addition, 3 ,.Me,, and >.e.. M are
dense in M.,

(5) The set of finite linear combinations of {e,s} is dense in M.

(6) For every me M,

€ua M €55 = Nps(M)€ns

(where \,4(m) is a complex number).

By means of such matrix units, a generalization of the technique
used to show that the ring of # X 7 complex matrices is simple could
be used to determine conditions under which the tensor product of
two topologically simple I*-algebras is topologically simple. This
technique may be further refined to prove the following proposition.

ProrosiTioN 12. Let M be a topologically simple I*-algebra, N
be a topologically simple, semisimple Banach algebra (not necessarily
an annihilator algebra), and let ¢ be a cross-norm on M & N that is
compatible with multiplication and of local character, then the follow-
ing conditions are equivalent:

(1) M®.N is topologically simple.

(2) M®.,N is semisimple.

(3) LMQ.N)=A(MRK.N) = (0).

Proof. Assume M, N is topologically simple and let R be
its radical. Since R is a closed ideal, R= MR, N or R = (0).
However, since M is semisimple, there must be at least one element,
m, of M that is not topologically nilpotent (i.e., lim, || m*|[¥* = 0).
Similarly there is a nontopologically nilpotent n e N. Since ¢ is a
cross-norm, T ~ m @ n is not topologically nilpotent, and thus T ¢ R
therefore, R must be (0).

That (2) implies (3) is obvious, and thus it only remains to show
that (3) implies (1). Therefore, let I be a nonzero closed ideal of
M &, N. Notice that if {e,;} is the set of matrix units in M and
if n, varies freely through N, for every (a,7), (MR, N) (.. ® n;)
can be isomorphically and isometrically identified with Me,, ®. Nn,,
which in turn can be embedded in M &, N since ¢ is of local character.
Thus by an argument similar to that used in the statement just
preceding Proposition 10, >\, »(M Q. N)(e.. Q n,) is seen to be dense
in MR, N. Similarly 3., n(€ea @ n )M K, N) is dense in MK, N
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also. Now if 0= Tel, by the two preceding statements and the
hypothesis that (MR, N)= B MK, N) = (0), there must be
indices «, 8 and m,, n, € N such that

0 # (€aa @ 1) T+ (€55 Q 1) .

Next let {T;} be a sequence of simple tensors (T, ~ 3K, m;, @ #,3)
such that lim;, T, = T. It is readily seen that for each index, <,
(Caa @ M) T (635 @ M) = €,5 @ n,; for some n; e N, In fact, it is then
seen that 0 # (e,, @ 1)) T+(e5: K 1,) = e,5 K n, for some n,€ N. Now
let (0) # K, ={n:e,; Q@nel}SN. K,; is seen to be a closed ideal,
and thus by topological simplicity, K,s = N, i.e., ¢,; @ ne I for every
n e N.

Now consider any pair of indices (v, d). There must be some
n,n' € N such that 0 = e,; Q nn' = (¢, @ n)e.s K n'), since otherwise
nn' = 0 for every m,n’ €N, ie., N?=(0), which contradicts the
semisimplicity of N. Letting now (0) = K,; = {n:e,; @ nel}, we
see by the argument used above, K,; = N. Repeating these arguments
once more, we see that e, QX nel for every ne N. Since the set of
finite linear combinations of the elements ¢, is dense in M and ¢ is
a cross-norm, it is seen directly that finite linear combinations of
elements of the form e,; ® n is dense in M @, N. Thus since I is a
closed ideal in M, N, it follows that I = M. N.

As an immediate application we see that if A is an [*-algebra
and B is a semisimple annihilator Banach algebra, then the structure
of AR, B is determined in the event that A . B is semisimple. In
fact, in this case for every (a, 8), M, X, N; is semisimple also and
thus is a minimal closed ideal of A ®, B. In particular, the structure
of B*(G, A) and C(G, A4) is thus known when A is a semisimple anni-
hilator Banach algebra. In fact in this case each B?(G, A), for example,
is the topological direct sum of its minimal closed ideals. Each of
these minimal closed ideals is of the form [M(-)N], where M is a
minimal closed ideal of L*?(G) and N is a minimal closed ideal of A
(cf. the notation introduced in Proposition 11).

Similar results may be stated when the non-I*-algebra above is
not necessarily an annihilator algebra but is a semisimple, topologically
simple Banach algebra. However, if say A is such an algebra, it has
not yet been shown that B?(G, A) is semisimple.

LEMMA. If Ais a semisimple, topologically simple Banach algebra,
then B*(G, A) (1 < p < «) and C(G, A) are semisimple.

Proof. Since A is semisimple, <7,(A4) = <#,(4) = (0) which implies
Z(B*(G, A)) =F (B (G, A)) = (0). Now let {Ng be the collection
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of minimal closed ideals of L*(G). By minimality, N;-N, = (0) if
B # v, and thus (N;Q®, 4)-(N,®, A) = (0). Now if for some 45,
0+Te Lrge, s(Np &y A), then by the above orthogonality relation,
T-(N,Q®,A) = (0) for all v+ . As a result, T-3:(N:&®, 4) = (0),
and thus T-B*(G, A) = 0, which is impossible. Thus in fact for all
By Lo s(Np®, A) = (0). Similarly for right annihilators. Thus
by Proposition 12, N; ®, A is semisimple for every B. This implies
that B*(G, A) is also semisimple, since if R is the radical of B*(G, A)
and if R == (0), then by the technique used in the proof of Proposi-
tion 10, R N (Ns ®, A) = (0) for some B’. But also RN (N Q, 4) is
the radical of N @, A, which must be (0).

The above result is useful in trying to extend our discussion
beyond a consideration of annihilator algebras.

We have now essentially solved the problem of determining the
structure of B?(G, A) and C(G, A), and we have determined the minimal
closed ideals of these algebras. To complete our study we have only
to now find a concrete representation for these minimal closed ideals.
Such a representation is demonstrated as part of the following
generalization of the results discussed in Proposition 12.

ProposiTiON 13. Let M and N be topologically simple, semisimple,
annihilator Banach algebras and let ¢ be an ordinary cross-norm on
M & N that is compatible with multiplication and of local character,
then M @, N is topologically simple if and only if it is semisimple.

Proof. We saw in Proposition 12 how topological simplicity
implies semisimplicity. For the converse we need the following lemma.

LEMMA. Let P, and P, be primitive Banach algebras with dense
socles. Let X, X, be minimal left ideals of P, P, respectively.
Finally let ¢ be an ordinary cross-norm on P, Q P, that 1s compatible
with multiplication and of local character. Then the radical of
P, Q. P, is the kernel of the left regular representation of P, R, P,
om X, &, X,.

Proof. As in Proposition 9 we see that X, &, X, is a minimal
left ideal of P, X, P, and thus the left regular representation is
irreducible. Therefore the radical of P, ¥, P, must be contained in
the kernel of this representation.

Conversely, we note first that the left regular representation
of P, on X, is a faithful, continuous, strictly dense representation,
([14], p. 68). Let

P Py B S (X))
and
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4!1‘2: P2 Aand l@zg -@(X2)

denote these representations. By means of 4, and +, P, ®° P, may
be algebraically identified with <, Q <#,. In fact, let

#’:P1®0P2—’%®%
be defined by

© (g P Q pzi) = g Vi(D15) Q Vo(D2) -

It is easily seen that ' is a well-defined isomorphism onto Z, R ..
Next let

0" ZB,Q B,— F(X, Q. X,)
be defined by

[P (G ron )§eon)-

Since for all 1 <1 < n, Ty; = ¥vu(py) and Ty = r(Dy;), the above ex-
pression may be written as

[9' (z T, Tu )](iz 2y @ x)
= (7w ®pu)-<f\’;wu ® ) -

Thus since ¢ is compatible with multiplication, ¢’ Ti; @ T.,) is
seen to be bounded on X, ®°X, and thus may be extended by
continuity to a bounded operator on all of X, ®.X,. We will also
denote this extended operator by (32, T\ ® Ty). Gil de Lamadrid
([6], p. 360) shows that ¢’ as thus defined is a well-defined algebraic
isomorphism from <7, <%, into Z# (X, Q. X;). By means of these
two algebraic isomorphisms, <7 Q <% may inherit either of two
norms, viz., the c-norm from P, ®°P, via p, or the operator norm
from (X, Q. X;) via 6. By means of the relation (*) above we
see that for ce % ® FZ. |0, =<0l Thus, if we complete
B R F, to #, R, F, ' can be extended to the isometric and
isometric map

2 Ti(@1) Q Toslzy) -

nm
i=1 j=1

k3

(*)

F‘:P1®0P2’_’~%®c-%r

and ¢’ can be extended by continuity to the well-defined (although
not necessarily one-to-one) map

0:%@0%'—’-@(X1®0X2)'

Now let ¢ = 0o p. @ is readily seen to be the left regular represen-
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tation of P,®, P, on X, ®, X,. We now wish to show that if R is
the radical of P, ®, P, then ker p & R. We will extend a technique
given in ([14], p. 103).

Let zekerp, then p(r) =0 is an element of kerd. Take
{0.} & & Q° &, such that |0, — 0|, — 0. Note that then || o, ||,, — 0.
Next notice that every bounded operator of rank 1 on X, can be
written in the form f(-)x, where f,e¢ X}, z,€X,. Similarly every
bounded operator of rank 1 on X, can be written in the form fy(-)x,,
where f,e X, and z,¢ X,. Now if we let

¥i(S) = F,.S
and

'\[’z(sz) = % S %
(where S; is the socle of P;), then it is seen ([14], pp. 68 and 65)
F; is precisely the ideal consisting of all of those bounded operators

of finite rank on X, that are in <. Thus taking fi(-)x, 9.(*)¥. € F,
and fy(-)2,, 9.(-)y, € 5, we see by direct computation that for every »n

1 (Fi( )2 @ fo()22) 0 (9:( )Y, Q ga(+)¥a) |l
= [ (1)) (Y @ ¥)]) - (9.(+) g )@, @ 22)) |,

where, since by hypothesis ¢ = \, fi(-)f:(+), .(-)g(-) are elements of
[X. ®. X,] (cf. [13], p. 43). Thus the above expression equals

[fl(')fZ(')[ﬁ(o'n)(yl ® yz)]l ‘ ng(')gz(')(xx ® xz) Hc
= Hfl()fZ(')HooH 6(07»)(?/1@yz)Hc’”91(’)92(')(x1®x2)Ho
= Hfl()fZ() HmH 0(0n)ilop'H Y Q yz“c“ 91(')92(‘)(x1® a:Z)Hc .

But by hypothesis || 6(a,)l,, — 0, and thus the above inequality yields
that

N(fi(+), X fo(*)2) 0, (9.(+)y, & 9:(* )Yl — 0
also, i.e.,

(fi()2, Q fo(+)@2) - 0-(9.(* )Y, @ 9:(+)y) = 0 .

But fi(-)x, g.(1)y, and fi(-)x,, g.(+)y, were arbitrary bounded operators
of rank 1 in &, and ., respectively. Thus it must be true that

(F1Q F2)0:(FQ F:) = (0).

Also by hypothesis, S, is dense in P, and S, is dense in P,, therefore
it follows that S,® S, is dense in P, ® P,. Thus, as a result of the
method we have used to define the c-norm on 7 R <7, it must also
be true that &, ®Q &, is dense in 7, Q, ;. Therefore

(Z Q. F)0:(Z, Q. %) = (0) .
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Applying ¢~ to this expression we see that
(Pl ®c Pz)‘T'(Pl ®0P2) = (0) .
However, this means e R ([10], p. 304).

Now to use this lemma to prove the rest of Proposition 13. M
and N, as topologically simple, semisimple annihilator Banach algebras,
are primitive Banach algebras with dense socles ([14], pp. 100-1).
Therefore, since by hypothesis M Q. N is semisimple, the left regular
representation, @, of M &®, N on a minimal left ideal of the form
X, ®. X, is faithful and irreducible. In fact, ¢ is also strictly dense
([14], p. 68).

Now let I be a nonzero closed ideal of M Q. N. ¢(I) is thus a
nonzero ideal of (M &, N). The socle of (M &, N) consists of all
operators on X, ®. X, that are of finite rank and contained in
p(M Q. N), and it is contained in every nonzero ideal of (M &, N)
(141, p. 65). Therefore in the notation of the above lemma,

0) # (S, ® S, = FIQ ¥, Ssocle p (MR, N) S p(I) .

Thus S,® S, &1, but S,® S, is dense in M KR, N, and therefore so
is I. Since I is closed, however, I = M &, N then.

We, therefore, have completely determined the structure of a
suitably normed tensor product, A Q. B, of two semisimple annihilator
Banach algebras in the event A&, B is semisimple. In fact, in this
case, A®,B is the topological direct sum of its minimal closed
ideals, each of which is of the form M, &, N;. In turn each of these
minimal closed ideals has a faithful, continuous, strictly dense repre-
sentation on a Banach space, and the subalgebra consisting of those
bounded operators of finite rank that are contained in the image of
M, Q. N; is dense in the image of M, ®, N;.

Since we have already noted that the p-norm is an ordinary
cross-norm, the above representation of the minimal closed ideals may
be carried out for B?(G, A) and C(G, A).

In fact, we can make a further comment about the above represen-
tation in the event that one of the algebras has finite-dimensional
minimal closed ideals (as is the case for B*(G, A) and C(G, A)). Then,
since ¢ is an ordinary cross-norm, the Banach space mentioned above
is reflexive (ef. [15], pp. 137, 51, 141 in that order).

The author expresses his gratitude and acknowledges his indebted-
ness to his adviser, Professor B.R. Gelbaum, for his encouragement.
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Added in proof: With regards to the question raised following
the first definition in § 1 as to the existence of a semisimple Banach
algebra that is an annihilator algebra but not a dual algebra, such
an example has been given by B. E. Johnson (Newcastle upon Tyne).
In fact his example is also commutative. The topologically simple
case is still an open question. Some of the results in §1 follow also
from results in Modular Annihilator Algebras (Canadian J. of Math.
18 (1966), 566-578) by B. Barnes. The conjecture following Proposition
3 concerning inheritance of semisimplicity by B?(G, 4) and C(G, A)
has been answered in the affirmative by this author and others. The
author’s proof will soon appear in the Proceedings of the American
Mathematical Society.
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