Vol. 24, No. 3, 1968

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Vol. 286: 1  2
Vol. 285: 1  2
Vol. 284: 1  2
Vol. 283: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Editorial Board
Officers
Special Issues
Submission Guidelines
Submission Form
Subscriptions
Contacts
Author Index
To Appear
 
ISSN: 0030-8730
On symmetry in certain group algebras

Duane W. Bailey

Vol. 24 (1968), No. 3, 413–419
Abstract

A complex Banach algebra A with involution x x is symmetric if Sp (xx) [0,) for each x A. It is shown that (i) if A is symmetric, the algebra of all n × n matrices with elements from A is symmetric, and (ii) the group algebra of any semi-direct product of a finite group with a locally compact group having a symmetric group algebra is again symmetric.

Mathematical Subject Classification
Primary: 46.60
Milestones
Received: 20 May 1964
Revised: 5 April 1967
Published: 1 March 1968
Authors
Duane W. Bailey