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In this paper some results concerning the products and
quotients of probabilistic metric spaces are presented.

Probabilistic metric spaces were first introduced by K. Menger in
1942 and reconsidered by him in the early 1950’s |3, 4, 5]. Since
1958, B. Schweizer and A. Sklar have been studying these spaces,
and have developed their theory in depth [9, 10, 11,12, 13]|. These
spaces have also been considered by several other authors [e. g., 2, 14,
15,16]. An extensive, detailed up-to-date presentation may be found
in {7].

In the sequel, we shall adopt the usual terminclogy, notation and
conventions of the theory of probabilistic metric spaces, with but one
exception: In all previous work, the distribution functions which
determine the distances between points were required to have supremum
one. Our investigations have led us to drop this requirement and
the results which we present here show that doing so is natural.
It is easy but tedious to check that the restriction to distribution
functions with supremum one is not required in any of the previously
established results which will be needed in the sequel.

In concluding this introduction we remark that products of pro-
babilistic metric spaces have previously been considered by V. Istratescu
and I. Vaduva [2]. However, their definition of Cartesian product
employs associative functions which are stronger than Min, the
strongest possible triangular norm, Because of this, and in view of
the discussion given in [10], their results appear somewhat restrictive.
Also, a number of the results concerning finite products, which are
presented in §1 and which were announced in [1], have recently been
obtained independently by A. Xavier [17].

1. Product spaces.

DeriNniTiON 1. Let (S, &) and (S,, §.) be PM spaces and let T
be a left-continuous t-norm. The T-product (S,, F.) X (S. F.) of (S, F)
and (S, %) is the space (S, x S, T(F, %.)), where S, x S, is the
Cartesian product of the sets S, and S, and T(%, §.) is the mapping
from (S, x S,) x (S, x S,) into the set of distribution functions 4
given by
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T(F., B, @) = T(Fudpy, 0), B0z €2))

for any p = (p, p,) and ¢ = (g, ¢,) in S; X S..
We shall often denote S, x S, by S and T(F., F.) by Fr, and when
there can be no doubt, omit the reference to 7' and write F.(p, q) = F,,.
As immediate consequences of Definition 1 we have:

THEOREM 1. The T-product (S, §.) of two PM spaces (S, F.) and
(S;, §) 98 @ PM space.

THEOREM 2. If (S, %, T) and (S, &, T) are Menger spaces
under the same left-continuous t-norm T, then their T-product is a
Menger space under T.

COROLLARY 1. If (S, &, T and (S, 5. T.) are Menger spaces
and if there exists a left-continuous t-norm T which s weaker than
T, and T, then their T-product is a Menger space wnder T.

We now determine conditions under which the product of equilateral,
simple, or a-simple PM spaces is again a PM space of the same type.
We begin with,

THEOREM 3. If (S, &) and (S,, §F.) are equilateral spaces generated
by the same distribution function G, then their Min product (S, X Ss, Bain)
1s an equilateral space generated by G.

Proof. Let p = (p, »,) and ¢ = (q,, g,) be distinet points in S, x S,
and consider

Foy(x) = Min (F0,(%), Fpy,(®))

In all three cases, (1) p, # q, p: # @5 (2) P, = ¢, P: # @5 (3) . # ¢4,
P, = ¢, We have F (x) = G(x) from which the result follows.

It should be noted that the choice of Min in the above theorem
is necessary, since we must have

T(H(z), G(x)) = T(G(x), G(x)) = G(x) ,
where H is the distribution function defined by

0,2<0

Hi =
@=11e>0.

In general, this is true only for 7 = Min. Similarly, it is necessary
that (S, &) and (S,, §.) be generated by the same distribution function.
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THEOREM 4. If (S, §) and (S,, F.) are simple spaces generated
by the metric spaces (S, d,) and (S,, d,), respectively, and the same
distribution function G, then their Min-product (S; X S, FBum) 48 @
simple space generated by the metric space (S, x S,, Max (d,, d,)) and G.

Proof. Let p = (p,p.) and ¢q = (¢, ¢,) belong to S, x S,. It
follows from Theorem 1 that F,, = H if and only if p =g¢. Thus
we have only to show that whenever p +# ¢ F,(x) = G(x/d(p, q)), where
d(p, @) = Max (d(p,, ¢.), d(p., ¢.)). There are again three cases to
consider:

(1) If p, #4q, and p, # q,, then

qu(x) = Min {G(x/dl(pu 44)), G(x/dz(pzy q:))}
= G(x/Max (d.(p,, 7)), d(D:, 02))) = G(x/d(p, q)) .

(2) If p,=q, and p, # q,, then di(p, ¢;) = 0 and

Fo(z) = Min (H(x), G(x/dy(Dx ¢2)) = G(x/d(D,, q.))
= G(x/Max (0, dy(p,, ¢.))) = G(z/d(p, q)) .

(38) If p, #q, and p, = q,, we proceed as in (2) above.

DEerFINITION 2. A distance distribution function G is strict if it
is continuous and strictly increasing on [0, ) and with Sup, G(x) = 1.

The restriction of G to [0, ) has an inverse which we will denote
by G* and refer to as the inverse of G.

THEOREM 5. Let (S, F) and (S, §.) be a-simple spaces, a =1,
generated by the metric spaces (S, d,) and (S,, d,), respectively, and
the same strict distribution function G. Let T be the strict t-norm
whose additive generator is (G*)™*, where m = 1[12]. Then the
T-product (S; x S, Fr) s an a-simple space generated by the metric
space (S, X S,, (d 4+ dM)'™) and G.

Proof. Let d = (df + d)'™ and let p = (p, p,) and ¢ = (g, ¢2)
be distinet points of S, x S,. We have to show that

qu(x) = G(x/da(pr q)) .
We again split cases:
(1) If p, # q, and p, # ¢q,, then

Foo(@) = T(G(x/dY(py, q.)), G(2/d3(D,, 02)))
SHIG@/di(p,, 0) + FG(@/di(p,; ¢2))}
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where f = (G*)™™* and f* = G(§~*'™) and j denotes the identity func-
tion. It follows that fG = j—™/*, whence

Fo (@) = fHa™(dMp, ¢.) + A7 (0, ¢:))}
= G{e(dM(p,, ¢) + A7 (D 02))"} = G(x/d*(p, @) .

(2) If p, =q, and p, # q,, then for x >0

F,(2) = T(H(x), G(x/d;(p., q2))) = G(z/d“(p, q)) .

(3) If p, # ¢, and p, = q,, we proceed as in (2).

As a result of Theorem 2 in [12] it follows that for « > 1 the
a-simple spaces above are all Menger spaces under the t-norm 7
whose additive generator is (G*)Y“~%, Moreover as B. Schweizer
has observed, if we want to have T = T’, then @ and m must satisfy
the equation 1/(1 — &) = —m/a, from which it follows that

lja +1/m =1,

We now turn to the question of topologies on the 7T-product
spaces and state as our final result of this section.

THEOREM 6. Let (S, . T) and (S,, §. T) be Menger spaces under
the same left-continuous t-norm. Let B’ denote the ¢ — \ neighborhood
system n (S, X S, §r, T) and let B denote the meighborhood system
in (S; X Sy B, T) comsisting of the Cartesian products N, x N,,
where N, and N,, are ¢ — \ neighborhoods in the respective component
spaces (S, i, T) and (S, Fy T). Then B and B induce equivalent
topologies on (S, X S, Fr, T').

Proof. We first note that since T is assumed to be left-continuous,
the neighborhood systems B and ¥’ are in fact bases for their respec-
tive topologies [10]. Consequently, it suffices to show that for each
B in ¥ there exists a B’ in B’ such that B’ < B, and conversely. Let
A, x A, be an element of B, Then there exist neighborhoods N, (¢, \,)
and N, (e, \,) contained in A, and A,, respectively. Let

¢ = Min (¢, &), A = Min (A, \,)

and p = (p, ). We will show that N, (¢, ) S A, xA4,. To this end,
let ¢ = (q,, ¢.) belong to N, (¢, \). Then we have

Fpe) = T(Fyq(6), 1) = T(F, (6, Foy(&)
> T(Fy 0 (6), Fppy(©) = Fole) >1 = A 21—,

Similarly, F,,(&) > 1 —X,. Thus ¢, € N, (¢, 1) and q,eN,,(&;, \,), from
which the result follows.
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Conversely, suppose that N,(¢,x) is an element of ¥'. Since T
is left-continuous, Sup,., T(z, x) = 1, so that there exists an » such
that

T1 — 51 -7 >1—x.
Let ¢ = (g, ¢.) belong to N, (¢, 7) x N,,(¢,%). Then
qu(é) - T(Fplql(e)! Fp2q2(5)) g T(l - 7]y 1 - 7}) > 1 - A

so that ge N,(e, ) and N, (¢, ) X N, (¢, 7)) S N,(¢, n). This completes
the proof.

Note that the proof of the first half of Theorem 6, i.e., of the
fact that for any B in B there exists a B’ in ¥’ such that B’ B, is
independent of any hypothesis on the ¢-norm 7', while the proof of
the second half requires only that Sup,.,T(z, ) = 1.

We conclude this section by remarking that all the above results
may be extended in an obvious way to include products of any finite
number of PM spaces.

2. Diameter of and distance between sets. Throughout this
section (S, &, T') will denote a Menger space with a continuous ¢-norm.

DerINITION 3. Let A be a nonempty subset of S. The function
D,, defined by

D, (%) = Sup [Inf Fm(t)] ,
<z p,g€ A4
will be called the probabilistic diameter of A.
We now establish the properties of the probabilistic diameter.
Proofs requiring only routine calculations will be omitted.

THEOREM 7. The function D, is a distribution function.

DEFINITION 4. A nonempty subset A of S is bounded if
Sup, D, (x) = 1, semi-bounded if 0 < Sup D (x) < 1, and unbounded if
D,=0.

THEOREM 8. If A 1is a nonempty subset of S, then D, = H if
and only if A comsists of a single point.

THEOREM 9. If A and B are nonempty subsets of S and AZS B,
then D, = Dy.

THEOREM 10. If A and B are two nonempty subsets of S such
that ANB = @, then
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(2.1) D, s(x + y) = T(D,(x), Dy(y)) .

Proof. Let z and y be given. To establish (2.1) we first show
that

2.2) Inf Fl @ +y) = T(Inf Fyy(), Inf F ,,(y))

P,9€

There are two distinct cases to consider:

Case (1).
2.3) Inf F X+ Y = Inf F(x+y).
€A

p,q€ AU
qu

Now for any triple of points p, ¢ and = in S, we have
F (e +y) =z T(F,(2), F,(y)).

Taking the infinum of both sides of this inequality as p ranges over
A, g ranges over B and r ranges over A N B, and using (2.3) we have,

Inf F, (x +y) = Inf T(F,(x), F Tq(y))

p,qe AUB
rsAnB

However, since T is continuous and nondecreasing we obtain

Inf Fl+9) 2 T(Inf F, (), Int F,,,(y))

Case (2).
Inf F(x+y) < Inf F(c+y.

p,ge AU
q€B

In this case one of the equalities,

Inf F,(x+y) = Inf F(x + v)

?2,qe AUB
or
Inf F,(z+y) = Inf Fo(@ + v)

p,9€ AUB

must hold. If the first equality holds, we have

Inf F(x+y) = T<Ianqu(x), H(y)>
P,q€

»,qe AUB

> T(Inf F, (z), Inf qu(y)) .
p,g€d »,q€ B
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The same argument works for the second equality. This establishes
(2.2).

Finally, using the fact that the rectangle
{(5,1):0=s=2,0t =y}

is contained in the triangle {(s, t): s, ¢t = 0, s -+ t < 2 -+ y}, the inequality
(2.2) and the continuity of T we have

Dol + ) = Sup [ Inf F, (s + t)]

s+t<z+yl p,ge 4UB

= Sup[ Inf F, (s + t)]

s<w p,qe AUB
t<y

> T(Sup [p;?efAqu(s>], Sup[ Inf ,,q(t)])

s<x t<y Lp,geB

= T(D,(x), Dy(v)) .

THEOREM 11. If A is a nonempty subset of S, then D, = D,
where A denotes the closure of A im the ¢ — N topology on S [10].

Proof. Since A< A, it follows from Theorem 7 that D, = D1.

Let 7 > 0 be given. In view of the uniform continuity of ¥ with
respect to the Lévy metric L on 4 [8] there exists an ¢ > 0 and a
A > 0 such that for any four points p,, p., : and p, in S,

L(F,,, Fyp) <7

whenever F, ,(¢) > 1 — X\ and F,,(¢) >1—\.
Next, with each point 7 in A associate a point p(P) in A such
that F,(;)3(¢) > 1 — A. Then, in view of the above for any pair of

points » and ¢ in A,
L(F e, F357) <7 .
In particular, for all ¢ we have,
Foaem(t — 1) — 1 = F53(0) .
Let A, = {p(p): pc A). Then since 4,< A4,

Inf F53(0) = Inf 5@ —9) — 7
=Inf F,(t —n) —np=Inf F (¢t -7 —7.
Ay p,qce4d

p,q€

Now, taking the supremum for ¢ < x of the above inequality yields
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Da(w) = Sup[Inf F;;(t)] = Sup| Int ot )] -

<z P,q€4 >z

~ Sup| Inf Fyuft) | =7 = Dulw =7 — 7.

t<z—7

Since the above inequality is valid for all » and since D, is left-
continuous it follows that

Dy(x) = D(x) .
Whence D4(x) = D,(x) and the proof is complete.

DEFINITION 5. Let A and B be nonempty subsets of S. The
probabilistic distance between A and B is the function F',; defined by

(2.4) Fy() = Sup T (Inf [Sup F,,,(t)], Int [sﬁ? Fm(t)]) :

t<z pedl geB

In establishing the properties of F',, we again omit the routine
proofs.

THEOREM 12. F; is a distribution funciion.

THEOREM 13. If A and B are nonempty subsets of S, then
FZB:: Fy,.

THEOREM 14. If A is a monempty subset of S, then F,, = H.

THEOREM 15. If A and B are monempty subsels of S, then
F&B ::IWZE-

Proof. It is sufficient to show that F,, = F,5 since this result
together with Theorem 13 yields
IT;B = IPAE = IWEA = F5;

With this in mind we first show that F,3 < F,,. Since BS B for
all ¢,

4B »

(2.5) Inf [Sup q(t)]>Inf [Sup ,,E(t)].

geB q€RB

Let » > 0 be given. The argument given in the proof of Theorem
11, establishes that for each point §e B, there exists a point ¢(7) in
B such that for all ¢,

FPE(t - 77) -7 é qu(?)(t) .
Let B, = {q(@): §c B}. Since B,< B we have,
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Su_p FPE(t - 77) = = SuP pg(q) (t) = Slg—gp F:aq(t)

q&€B 9B

= Sup F(¢) .
qe B

Consequently,

Inf [ Sup F(t — 7) | — 7 < Inf [ Sup (0] .

ped bl geB

Moreover, taking the supremum on ¢ < z of the above inequality,
yields for any 7,

f(@) = Sup (Inf [SUp ,,q(t)]> > Sup (Inf [SEI? Pt — ;7)]> _

= sup (InfSup )]} - 7 % oo = — 7.

Now since both f and g are left-continuous and 7 is arbitrary, it
follows that f(x) = g(x). This together with (2.5), and the continuity
of T yields

Fap@) = T{Sup (Inf [Sup F,,q(t)]>, Sup (Inf Sup Fm(y)]>}

t<z peal geB t<sz geB L peid
= r{sep (1nf [ Sop 70 ]) Sup (10 [ s0p 0 )
x €A g€ <z 7€ pe4d
— Sup T<Inf [gu_p Fpg(t)] Inf [Sup qu(t)]> — F).
t<z red LgeB ¢eB

A similar argument shows that F,3 = F,;. Combining these
inequalities yields the desired result.

THEOREM 16. If A and B are mnonempty subsets of S, then
F,, = H if and only if A = B,

Proof. Suppose F,, = H and let ¢ > 0 be given. Then

1= F) = T{Sup (Inf [§3Bp qu(t)]> Sup (Inf [Sup M(ﬁ])}

t<e ped <e qeB

= Sup ( Inf | Sup F,,q(t)]) = Inf [Sup pq(s)] .
t<e geB L pe4 geB
So that for any ge B and every A > 0 there exists a point p in A
for which F,(¢) > 1 — A. Consequently, ¢ is an accumulation point
of A and we have BS A. A similar argument shows that A< B.
Conversely, suppose A = B. Then in view of Theorems 14 and
15, Fyp = F35 = F3z = H.

THEOREM 17. If A, B and C are nonempty subsets of S, then
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Jfor any x and y

Fp@ + ) 2 T(F.0o®), Fpe(y)) .

Proof. Let w and v be given. Then for any triple of points
»,q and r in S we have

Fo(u + v) 2 T(F,,(u), Fi()

Making use of the continuity and monotonicity of 7' we have the
following inequality:

Sup F(u +v) =T <Sup F,.(w), Inf [Sup Fq,(v)—D .
qeB reC regC geB

Consequently,

Inf rSug Fo(u + v): > 7 (Inf [ Sup F,,,(u)], Inf [ngg Fw(v)D .

pedl ge ped L reC

Similarly,

[ T r
ot [Sup £+ 0] = 7 (1nt [ Sup P, 0] Int [ Sup 0]

geB L reC _»p

Therefore, since T is associative, we have

( Inf [Sup F(u + v) Inf [Sup F(u + v)])

ped geB

= 7{7 (1nf [Sup F,,,(u)], Inf [ Sup F,.(u)])

peAd reC

7(1nt[SupFt0 ] ot [ Sup P ])}

Now arguing as in the last step of the proof of Theorem 10, we have

F,s(x + y) = Sup T<Inf Sup F(u + v)] ,

wtv<z+ty red

Inf [Sup Fo(w + v)]>

qe B

= Sup 7 (Inf [Sup Foou + v>], Inf [S,}j}f Foalu 4 0) b

u<le ped
<y

= 7 {Sup 7 (Int [Sup 7,.0) |, Int [Sup 7,,.0)])

u<lz peA reC rel

Sup 7 (10t Sup 7,0 | nt [ Sup 7,0 )}

v<y qeB

= T(F 4 (), Fpo(y)).

Let (S, %, T) be a Menger space under a continuous t-norm, T,
and let & be a nonempty collection of nonempty subsets of S. Then
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the function g defined for any A and B in & by Fg(4, B) = Fp,
where F,, is given by (2.4), is a mapping from & x & into 4.
Furthermore, as a direct consequence of Theorems 12-17 we have,

THEOREM 18. If each set in & is closed, then (&, Ty, T) is a
Menger space.

3. Quotient spaces. Let (S, %) be a PM space. In [4] K.
Menger introduced three types of distinguishability for pairs of points
p, ¢ in S depending upon the behavior of the distance distribution
function F,, near zero. These notions may be summarized in the

following:

DEFINITION 5. Let (S, ) be a PM space, let » and ¢ be points
in S and let ¢,, = Inf {&: F () > 0}. Then the distance between p
and q 1s:

(A) certainly positive if t,, > 0;

(B) barely positive if t,, = 0 and F_(0*) = 0;

(C) perhaps zero if F,,(0%) > 0.

In Menger’s paper a somewhat different terminology was used.
Namely, he said that p and ¢ are: (A) certainly distinguishable if the
distance between them is certainly positive; (B) barely distinguishable
if the distance between them is barely positive; (C) perhaps indis-
tinguishable if the distance between them is perhaps zero. The
reasons for the slight change in the terminology introduced here will
become apparent latter (see Definition 6, ff.).

The above mentioned types of distinguishability were recently
reconsidered by B. Schweizer [6] who defined two relations C and D
on S as follows:

(¢) pCq if and only if the distance between p and ¢ is perhaps
zero, i.e,, if and only if (C) holds.

(d) pDq if and only if the distance between » and ¢ is not certainly
positive, i.e., if and only if either (B) or (C) holds.

Concerning these relations, he obtained the following results:

TaeoreMm 19. If (S, &, T) is a Menger space and T a t-norm
such that T(a, b) > 0 whenever a >0 and b > 0, then the relation C
1s an equivalence relation.

THEOREM 20. Under the hypotheses of Theorem 19, (S,t) s
always a pseudo metric space. Moreover, (S, t) is a metric space if
and only if the distance between every pair of distinet points of S
18 certainly positive,
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THEOREM 21. If the hypotheses of Theorem 19 are satisfied, then
the relation D on S is an equivalence relation.

THEOREM 22. If (S, %, T) is @ Menger space such that
Sup T(a, a) = 1

a<l
and T(a, b) > 0 whenever a > 0 and b > 0, then the equivalence classes
in S determined by the equivalence relation D are closed subsets of
S in the ¢ — ) topology.

In view of the fact that we no longer require that all the distance
distribution functions have supremum one, various types of behavior
at infinity are possible and can be distinguished. Indeed, the entire
preceding discussion concerning behavior at zero can be dualized.

DEFINITION 6. Let (S, %) be a PM space, let p and ¢ be points
in S, let s,, = Sup {z: F,,(x) < 1} and let F,,(co) = lim,_... F,,(*). Then
the distance between p and q is:

(A")  perhaps infinite if F, (o) < 1;

B) barely finite if s, = = and F, (o) = 1;

(C) certainly finite if s,, < co.

We define two relations C’ and D’ on S which are dual to C and
D, respectively, as follows:

(¢/) pC’q if and only if the distance between p and ¢ is certainly
finite, i.e., if and only if (C’) holds.

(d) pD'q if and only if the distance between p and ¢ is not
perhaps infinite, i.e., if and only if F, (o) = 1, or equivalently if and
only if (B") or (C) hold.

TrHEOREM 23. If (S, %, T) is a Menger space, then C' is an
equivalence relation on S.

Proof. The fact that C’ is reflexive and symmetric is an immediate
consequence of the definition of C’. To show that C’ is transitive
suppose pC’q and qC’r, so that s,, < - and s,, < . Then for any
g >0,

Fpr(qu + S(I’r + 8) 2 T(qu(qu + 8/2)1 FQT(S‘IT + 8/2))

=TA1H=1.
Consequently, s,, < s,, + 8 < oo and pC'r.
THEOREM 24. If(S, %, T) is a Menger space in which the distance

between every pair of points is certainly finite, then (S, s) is a metric
space.
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Proof. In view of the proof of the previous theorem, we need
only show that s,, = 0 implies p = ¢g. To this end let s,, = 0, then
Sup {x : F(x) < 1} = 0. Whence, F,(0*) = 1 and consequently F,, = H
so that » = q.

THEOREM 25. If (S, , T) is a Menger space under a continuous
t-norm T, then the relation D’ on S is an equivalence relation.

Proof. From F,,(«) = H(~) =1 and F,, = F,, it follows that
D' is reflexive and symmetric. To show that D' is transitive suppose
pD'q and ¢D'r. Then for any z,

Fo(x) =2 T(F,o(2/2), Fo(2/2))
Since T is continuous the above inequality yields
Fyp(e0) = T(Fpo(o0), Fo(e0)) = T(1,1) =1
and thus pD'r.
THEOREM 26. Let (S, 5, T) be a Menger space under a continuous

t-norm T. Then the equivalence classes in S determined by the
equivalence relation D' are closed subsets of S in the € — )\ topology.

Proof. We first note that since T is continuous on the unit
square it is uniformly continuous. Now let pe S and let D’'(p) be the
equivalence class determined by p. To show that D'(p) is closed we
show that S — D'(p), the complement of D’(p), is open. Let 7 be any
point in S — D'(p). Then there is a » > 0 such that F,,(c0) =1 — A,
Since T is uniformly continuous and since T(a, 1) = a, there exists an
¢ > 0 such that T(a,1 — ¢) > a — M2 for all ¢ in [0, 1]. Let g € N.(s, ¢).
Then for any = > ¢ we have

Fo.(22) =2 T(F (%), Fo.(x)) = T(F(x), 1 — €)
> F(x) — 2.

Taking the limit as x— o yields
1 =X = Fp(c0) = Fpe(oo) — /2,
whence F, () <1 — A/2. Thus ¢¢ D'(p) and it follows that
N.(,e)=S — D'(p),
hence S — D’(p) is open.

TueorReEM 27. If (S, %, T) is a Menger space such that T 1is
continuous and T(a, b) > 0 whenever a > 0 and b > 0, then the equiva-
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lence classes in S determined by p and the equivalence relation C are
closed im the € — \ topology.

Proof. Let pe S and let C(p) be the equivalence class determined
by p. We show that S — C(p) is open. Let reS — C(p). Then
F,(07) =0 so that F,, is continuous at 0. Hence for every ¢ > 0
there exists a 6 > 0 such that F,,(6) > ¢/2 and a » > 0 such that for
all e [0,1] T(a,1 — \) > a — ¢/2. Let ge N,(6/2, \), then

€/2 > Fp,(0) = T(F,u(8/2), Fo,(0/2))
= T(Fp(0/2), 1 — N) > F,0(9/2) — ¢/2.

Hence for every ¢ > 0 there exists a 6 > 0 such that F,,(6/2) < e.
Consequently, F,,(0*) =0. Thus geS — C(p), whence N,(0/2,\) &
S — C(p) and S — C(p) is open.

TEEOREM 28. Let (S, 5, T) be a Menger space under a continuous
t-norm T. Let peS and let C'(p) be the equivalence class in S
determined by p and the equivalence relation C'. Suppose further
that there extists a number M such that for any u and v in C'(p)
we have F,(x) =1 whenever © = M. Then C'(p) s closed in the
€ — A\ topology.

Proof. Suppose g belongs to C'(p), the closure of C’(p), but not
to C'(p). Then F,,(x) < 1 for all finite =, so that for any ¢ > 0 there
is an ¢ > 0 such that F,(t+ M) >1—¢; and since ge C'(p), there
exists a we C'(p) such that F,(t) > 1 — ¢/2. Whence,

L —e> Fut + M) = T(F,u(M), Fo(t))
= T, Fo.(t)) = Fou(t) > 1 —¢/2,

which is a contradition. Thus C'(p) = C'(p).
The next four theorems show that, under suitable conditions, each
of the equivalence relations, C, C’, D, D’, can be “divided out”.

THEOREM 29. Let (S, F, T) be a Menger space under a t-norm
T which is continuous and such that T(a,d) > 0 whenever a > 0 and
b>0. For each peS, let D(p) be the equivalence class in S deter-
mined by p and the equivalence relation D and let S/D be the collec-
tion of all such equivalence classes. Then (S/D, Fsip, T') is @ Menger
space in which the distance between distinct elememis 1is certainly
positive.

Proof. The fact that (S/D, Fs,p, T) is a Menger space follows
directly from Theorems 18 and 22.
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Let D(p) and D(q) be distinet equivalence classes, and suppose
that

(3.2) totmpay = 0.

Since pe D(p) and g € D(qg), there is an x, > 0 such that F,(«,) = 0.
In view of (3.2), we thus have

0 < Fpippa ()
< T< Inf [Sup Fw(oco)] Inf [Sup Fw(wo)])

weD(p) LveD eD(g) LueD(p)

Hence,

0 < Inf [Sup F xo)]

uweD(p) LLveD
whence for each we D(p)
Sup Fuv(xO)

ve D(q)

Consequently there exists a ¢,€ D(g) such that F,, (x) > 0. Thus
since F,, 1is left-continuous, there is an ¢ 0 <e <wz, such that
F(x, —¢) > 0. Hence

0 = Flp () = T(Fg (2 — &), Foge)) >0,

since both F, (@, —¢) and Fy(c) are positive. However, this is a
contradiction and hence ¢, > 0.

THEOREM 30. Let (S, %, T) be a Menger space under a continuous
t-norm T. For each p €8 let D'(p) be the equivalence class in S
determined by p and the equivalence relation D', and let S/D’ be the
collection of all such equivalence classes. Then (S/D',Fsip, T) 1s @
Menger space in which the distance between distinct elements is
perhaps infinite.

Proof. In view of Theorems 18 and 26 (S/D’, §s,p., T') is a Menger
space.
Let D'(p) and D’(q) be distinct equivalence classes and suppose that
Fy o) = 1. Since pe D'(p) and g € D'(g), there is an ¢ > 0 such
that F () <1 —e¢. Since T is continuous

1= FD’(p)D’(Q)(OO)
= lim Sup 7 ( Inf [ Sup Fu,,(t)], Inf [ Sup Fu,,(t)D

r—ooo (< ueD’(p) Lve D’ (qy veD’(q) LueD’(

= S?p T( Inf [ Sup F”(t):l Inf [ Sup Fu'v(t)]>

weD(p) LveD’(q) veD’( weD’

_ 7 {Sup( Inf [Sup Fw(t)]), Sltlp( Inf [Sup Fw(t)])}

t w€D’'(p) LveD’ veD’(q) LueD’
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But T(a,b) = 1 if and only if ¢ = b = 1. Consequently,

Sup( Inf | Sup Fu,,(t)]) =1,

t weD!(p) Lve D' (q)

Thus, there exists an z, such that

Inf [ Sup F,“,(xo)] >1—¢2,

ueD’(p) Lve D’ (q)

Hence,

Sup F.(x) >1—¢/2.

veD'(q)
Since F',, is nondecreasing

Sup F, () =z Sup F,(x) >1—¢/2.

ve D’/ (q) veD’(q)
Consequently, there exists a gq.<c D’(g) such that

Fye (o) < 8up Fiu(co) — e/d > 1 — 3e/4.
veD'(q

and we have
1 —¢> Fp(oo) = T(Fypg(c0), Fog(0)) = Fp (o) >1—3¢/4.

which is a contradiction. Hence F (<) <1 and the distance
between distinct equivalence classes is perpaps infinite.

THEOREM 31. Let (S, 5, T') be a Menger space under a t-norm
T which is continuous and such that T(a,b) > 0 whenever a > 0 and
b>0. For each pec S, let C(p) be the equivalence class in S deter-
mined by p and the equivalence relation C, and let S/C be the collection
of all such equivalence classes., Then (S/C, Fsicy T) 1s a Menger
space. Moreover, if each C(p) in S/C is such that Inf, ..., F,.(0%) > 0,
then the distance between distinct elements is not perhaps zero.

Proof. The first part of this theorem is a direct consequence of
Theorems 18 and 27.

To establish the second part, let C(p) and C(q) be distinet equiva-
lence classes, and suppose that Fi.,,;(0%) > 0. Since pe C(p) and
g € C(g), we note first that

(3.3) F0t)=0.

Next we have
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0 < FC(p)C(q)(O+)
= lim Sup T ( Inf | Sup Fuv(t)]’ Inf [ Sup F, uv(t)])

h—0+t<h ueC(p) LveC(q) veClq) LueC(p)

<limT ( Inf [Sup F,“,(h)], Inf [Sup Fw(h)])

h—0t ueC(p) L.veClg) veClg) LueCip)

— 7( lim Inf [Sup Fu,,(h)], lim Inf [ Sup Fu.,(h)]) ,

r—0t uec(p) Lveciq) =0t veC(q) Luecip)

whence

lim ( Inf [Sup Fu,,(h)]) —A>0.

r—ot VNuec(p) L vec(q)

Thus, in particular,

lim (Sup F,,v(h)) >A>02>0.

h—0t veClq)
Since Sup,cqwF,, is increasing, for any 2 > 0 we have,

3.4) Sup F,.(h) > N2 .

veC(g)

From (3.4) it follows that for each h > 0 there exists a ¢, € C(q) such
that

(3.5) Foe, (k) > \2,

Now let Inf, .0 F.u(07) = . By hypothesis, 7 > 0, whence
T(N2,7m) >0,

Moreover, since ¢, <€ C(q)

(3.6) Fu,(b) 27,

for all # > 0. Next, in view of (3.3), there exists an h, > 0 such
that

(3.7) Foo(2h) < T(M2,7) .
Combining the inequalities (3.5), (3.6) and (3.7) we have
T2, 7) > Fpulhe) 2 Toay (o), Fugy (he) = TM2, 1)
which is a contradiction. Hence Fi,(0*) =0 and the proof is

complete.

THEOREM 32. Let (S, 3, T) be a Menger space under a continuous
t-norm T. For each pe S let C'(p) be the equivalence class in S
determined by p and the equivalence relation C', and let S/C’' be the
collection of all such equivalence classes. If each C'(p) in S/C' is
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such that for some M, s,,< M, for all w and v in C'(p), then
S/IC'y Fsicy T) s a Menger space im which the distance between
distinct elements is mot certainly finite.

Proof. In view of Theorems 18 and 28 (S/C’, Fscr, T) is a Menger
space.
Let C'(p) and C’(q) be distinct equivalence classes and suppose that

(3.8) Scrpmer@ < 0 .

Since p € C'(p) and q € C'(q) for each A > 0 there is an ¢ > 0 such that
(3.9) Fosomom + M, +0)<1—¢,

where s,, < M, for all % and » in C'(g). In view of (3.8),

1= Foimew(Sermera + M2)

_ Sup r( it [ swr.0)],

<80/ (p)C/ (q)+2/2 ueC’(p) L.veC’(q)

Inf [ Sup F,“,(t)]>

veC’(q) LiueC’(p)

= 7 Inf | Sup Fusormow + 2],

ueC’(p) L.veC’/(q)

Inf [ Sup Fuulsopom + M2)]) -

veC’(q) LueC’(p)

Since T(a, b) = 1 if and only if ¢ = b = 1, it follows that
Inf [ Sup F.(Scr o + X/Z)] =1,
ueC’(p) LveC’(q)

whence, in particular,

Sup va(so’(p)(]'(q) + \2) = 1.

veC’(q)
Thus, there exists a q.c C’(q) such that
(3.10) Foo(Sormera + M2) > 1 —¢/2.
Combining (3.9) and (3.10), we have

1—¢> FulSerpmeray + Mg+ N)
= T(Fyo(Sormeriar + M2), Foo(Mq + N/2))
= T(Fye(Scrimera + M2), 1)
= Foo(Sormeray + M2) > 1 —¢/2,

This is a contradiction, whence s;. (0 ) = o and the proof is complete.
In conclusion we note that under the hypotheses of Theorem 31
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the equivalence classes in S/C are either bounded or semi-bounded
and under the hypotheses of Theorem 32 the equivalence classes in
S/C’" are bounded.
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