Vol. 25, No. 1, 1968

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Vol. 286: 1  2
Vol. 285: 1  2
Vol. 284: 1  2
Vol. 283: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Editorial Board
Officers
Special Issues
Submission Guidelines
Submission Form
Subscriptions
Contacts
Author Index
To Appear
 
ISSN: 0030-8730
Some dual series equations involving Laguerre polynomials

John S. Lowndes

Vol. 25 (1968), No. 1, 123–127
Abstract

In this paper an exact solution is found for the dual series equations

n=0C nΓ(α + β + n)Ln(α;x) = f(x), 0 x < d, (1)
n=0C nΓ(α + 1 + n)Ln(α;x) = g(x), d < x < , (2)
where α + β > 0, 0 < β < 1, Ln(α;x) = Lnα(x) is the Laguerre polynomial and f(x) and g(x) are known functions.

Mathematical Subject Classification
Primary: 42.16
Milestones
Received: 14 April 1967
Published: 1 April 1968
Authors
John S. Lowndes