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In this paper we initiate a study of the theory of cosheaves
of modules. We are interested mainly in those facts which
are not encompassed by the known theories of sheaves with
values in general categories. A central result is the establish-
ment of the existence of a reasonably large subcategory of
the category of precosheaves and a reflector from this to the
subcategory of cosheaves. The general theory is applied to
the study of the Cech, singular, and Borel-Moore homology
theories. The main applications establish that the Cech and
Borel-Moore homology theories coincide on locally compact and
paracompact clc°° spaces and that the Cech and singular theories
coincide on paracompact HLC spaces. These isomorphisms are
established for locally constant coefficients. For constant
coefficients the latter result was originally established by
Mardesic and the former by 0. Jussila. There are also applic-
ations to acyclic coverings and to mappings.

There have been several treatments of sheaf theory with values
in an arbitrary category, notably [6] and [9]. More accurately these
treatments can be described as attempts to delineate the types of
value categories for which the theory goes through in reasonably
close analogy to the classical sheaf theory (values in the category of
sets, of modules, etc.). Little or no attempt has been made to develop
the theory in categories which will not admit such a close analogy.
To our mind the most interesting and important nonclassical case is
that of cosheaves of L-modules; that is, of sheaves with values in
the dual category to the category of L-modules (this may be regarded
as the category of compact L-modules; see [9, p. 77]). Unfortunately
the theories of [6] and [9] are hopelessly inadequate for this case.
[For example, in [6] it is assumed that the value category for sheaf
theory has enough "small" objects (termed "very small" in [9]), but
it is easily seen that the only cosmall object in the category of L-
modules is zero, for any ring L.]

From now on we shall let L denote a given base ring with unity
and the terms cosheaf, precosheaf, sheaf, presheaf, etc. will always
presuppose the category of L-modules as the value category. Cate-
gorical terminology will be that of [9]. "Covering" always means an
open covering.

In [1, Chap. V] the notion of cosheaves was put to work to obtain
some deep results on homology theory. However, we did not attempt
there to give a coherent "theory" of cosheaves, outside of some results
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necessary to our immediate purposes and of some indications in the
exercises.

In this paper we shall initiate such a study. In our opinion one
cannot expect to find anything like a complete duality with sheaf
theory and one must be prepared, from the start, to dispense with
some basic properties. The most basic concept in sheaf theory is that
of a sheaf generated by a given presheaf. In categorical terminology
[9] this is the concept of a reflector from presheaves to sheaves. We
believe that there is not much hope for the existence of a reflector from
precosheaves to cosheaves. However, we shall obtain such a reflector on
a reasonably large subcategory of precosheaves containing the cosheaves
and, on locally connected spaces, the constant precosheaves.

The general theory of cosheaves, together with material on Cech
homology, occupies the first five sections of the paper. In later
sections we apply parts of this general theory (but not all of it by
any means) to the study of the relationships between the Cech,
singular, and Borel-Moore homology theories. These applications
complement the results of [1, Chap. V] on the relationships between
the singular and Borel-Moore homology theories, but the present
treatment is largely independent of that work.

Some generalities on cosheaves may be found in [2], but the
contact with the present paper is negligible.

1* Cosheaves* Let X be a topological space. A precosheaf 31
(of L-modules) on X is a covariant functor from the category of
open sets in X and inclusions to the category of L-modules. For
U(zV the corresponding map 3I( U) —> 3I( V) is denoted by iV)U.

A precosheaf 3ί on X is called a cosheaf if, for every covering
{Ui} of an open set U c X, the sequence

0 31(17* ΓΊ Us) — 0 3I(^) — 3ί(C7) > 0

is exact, where a = Σ< W< a n d β = Σ<;,;> ( v ^ n ^ - %, ,^n^ ). If
we only require a to be epimorphic then 31 is called an epiprecosheaf
(the dual notion is that of a monopresheaf; see [9, p. 246]).

The following result shows that the cokernel of a homomorphism
of cosheaves is a cosheaf.

PROPOSITION 1.1. Let 31'—>3ί —>3l"-+0 be an exact sequence of
precosheaves. If 31' is an epiprecosheaf and 31 is a cosheaf then 31"
is a cosheaf.

Proof. This follows from elementary diagram chasing and is also
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valid for values in any abelian category (see [9; p. 254]). The details
will be omitted. Similar remarks apply to the following result.

PROPOSITION 1.2. Let 0—>2Γ—>2I—*2I"—>0 be an exact sequence
of precosheaves. If 21 is an epiprecosheaf and 21" is a cosheaf then
2Γ is an epiprecosheaf.

PROPOSITION 1.3. Let 2ΐ be a precosheaf. Then 21 is a cosheaf
if and only if the following two conditions are satisfied:

( a ) 2 I ( ? 7 n F ) - ^ 3 ΐ ( 2 7 ) e 2 I ( F ) - ^ 2 ΐ ( C / u F ) — 0 is exact for

all open U and F where β = (ίUtϋΓiV — iVtUnv) a n d a = W ^ + % U 7 , y .
( b ) If {Ui} is directed upwards by inclusion then the natural

map lim2I([7ί) —> 2ί( U Ui) is an isomorphism.

Proof. It clearly suffices to prove that if (a) is satisfied, then
for any finite collection {Ϊ7O, UL, •••, Un} the sequence

e W< n uά) - ^ ΘW*) — 2i([7) —> o

is exact, where U = U Uim Exactness on the right is clear by an
easy induction. The proof of exactness in the middle will be by
induction on n. Let U' = U, U U Un and F = Uo Π U'. Let
ss e 2I(tr

i) j = 0, 1, , n be such that Σ?^^/^-) = 0 in 2I([7). Let
*; = ΣΓw,(s;)e3I(EΓ). Then w0(»o) + W ' ( O = 0 so that by (a)
there exists a v e 2ΐ(C/0 n Ϊ7') = 2I(F) with

Now F = (ί/o Π C/Ί) U U (tTo Π C/«) so that there exist v, e 2ΐ(ί70 n Uά)
for 1 ίg i ^ % with

Thus

and an easy computation shows that the element

has zero component in 2I(C70) and projects to zero in 2I(E7i U U Un).
Thus the result follows from the inductive hypothesis.

A cosheaf 21 is said to be flabby if each ίVtU: 2I(Ϊ7) —>2I(F) is a
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monomorphism. [Note that in [1, V.I] it is shown that, for X locally
compact, the flabby cosheaves are precisely the cosheaves of sections
with compact supports of osoft sheaves. No corresponding charac-
terization is known on nonlocally compact spaces.]

The following result is basic:

PROPOSITION 1.4. Let

0—> SI' -^-> 21 -^-> 21" — 0

be an exact sequence of precosheaves. Assume that 2ί is a cosheaf
and that 21" is a flabby cosheaf. Then 2Γ is a cosheaf.

Proof. We will verify (a) and (b) of (1.3) for 21'. Part (b) is an
immediate consequence of the exactness of the direct limit functor.
Part (a) follows from a diagram chase in

2Γ( u nv) >—•> 2ΐ( u n V) —» st"( u n V)

SΓ( U) 0 2I'( F) > St( tf) 0 Sϊ( F) > 2ί"( U) 0 3Γ( F)

I i I
W(UUV) >—-> 2I(t/UF) — » 2 ί " ( [ / u F ) .

PROPOSITION 1.5. Let 21 be a precosheaf. The class of subpre-

cosheaves of 21 which are epiprecosheaves contains a maximum element

which is denoted by 21. Any homomorphism S3 —> 21 with 33 an epi-

precosheaf factors through 21.

Proof. This follows from results of the general theory of cate-
gories (see [9, p. 131]). For a direct proof, we define by transfinite
induction:

2ί0 = 21

2Ui( U) = {se 2U U) I s e Im (02tα( Ut) > 2Iα( U))

for each covering {Z7J of U}

= Π ^a(U) for β a limit ordinal.

Then clearly there exists an ordinal a with 2ία+1 = 2Iα and we let

2t = 21 .̂ The properties claimed are clear from this construction.

Note that the last statement implies that every homomorphism
21 —* 33 restricts to a homomorphism ft —* SB and hence 21 h-> 2ί is a
functor.
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2* Local triviality* As in [1, p. 219] we say that a precosheaf
2ί is locally zero if for each open UczX and xeU there is a smaller
neighborhood V of x with iUiV: 2ί( F) —* 2I( £7) zero. Clearly an epipre-
cosheaf is locally zero if and only if it is zero.

A sequence 2ί' > 2ί — -̂> 21" of precosheaves will be said to be
locally exact if gof=o and if the precosheaf Ker g/Im f is locally
zero. By exactness of a sequence of cosheaves we mean exactness
as a sequence of precosheaves.

PROPOSITION 2.1. The sequence 21' - ^ 21 - ^ U 21" -> 0 of cosheaves
is locally exact if and only if it is exact. (It suffices that 21" is a
cosheaf and 21 is an epiprecosheaf.)

Proof. Coker g is a cosheaf by (1.1) and, since it is locally zero
by hypothesis, it must be zero. This proves exactness at 21". By
(1.2) Ker g is an epiprecosheaf and it follows immediately that
Ker g/Imf is an epiprecosheaf. Since Ker g/Imf is locally zero it
must be zero, so that Im / = Ker g.

PROPOSITION 2.2. If 0 -> 2Γ -^—> 21 -^-» 21" -> 0 is a locally exact
sequence of cosheaves with 21" flabby then this sequence is exact.
If 21 is also flabby then so is 2Γ.

Proof. This sequence is exact at 21 and at 21" by (2.1). By (1.4),
Kei g = I m / is a cosheaf. Clearly 0 -+2Γ —> I m / - + 0 is locally exact
and hence exact by (2.1). The last statement follows from an easy
diagram chase.

COROLLARY 2.3. If

is a locally exact sequence of flabby cosheaves, then it is exact and
Ker dN is a flabby cosheaf.

Proof. Let & = Ker dn. Clearly

is locally exact. By (2.1)

0 >& >SΪ1 >2I0 >0

is exact. By (1.4) & is a cosheaf and, by (2.2), it is flabby. By
induction we see that each $n is a flabby cosheaf and that each sequence
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0 *& >§!.—> 3 -

is exact. The result follows.

LEMMA 2.4. The class of locally zero precosheaves is closed under
formation of subprβcosheaves, quotient precosheaves, and extensions.

Proof. All three parts may be handled simultaneously. Let
2t' —> 2ί —> 21" be exact with 21' and 21" locally zero. Let U be open
and xeU. Let VczU be a neighborhood of x such that 2Γ'(F) —>
2I"( U) is trivial and let W a V be a neighborhood of x such that
3Ϊ'(W) —>2Ϊ'(F) is trivial. Diagram chasing in

SI(TΓ) • SΓ'(ΪF)
I I

2Γ(F) > 2I(F) • 2I"(F)

I
> 2ί(ί7)

shows that 2I(~FF)-^ 2I(£7) is zero as desired. (The cases of subpre-
cosheaves and quotient precosheaves are given by taking 2Γ = 0 or
SI" = 0 respectively.)

REMARK 2.5. We are grateful to the referee for pointing out
that (2.4) shows that the locally zero precosheaves form a "thick
subcategory" (see [4, p. 15]). If one passes to the quotient category
then the local isomorphisms (below) and locally exact sequences become
actual isomorphisms and exact sequences. Clearly some of the propo-
sitions in the next section can be regarded as special cases of general
facts about such quotient categories.

3* Local isomorphisms* A homomorphism h: 31 —> 93 between
two precosheaves is said to be a local isomorphism if Ker h and
Coker h are locally zero (see [1; p. 219]).

If SI is an epiprecosheaf and S3 is a cosheaf then a local iso-
morphism ft,: 21—> 33 is necessarily an isomorphism by (1.1) and (1.2).

Consider commutative diagrams of precosheaves of the form

(3-D
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PROPOSITION 3.2. If (3.1) is a pusbout diagram and if / is a
local isomorphism then so is h. Dually, if (3.1) is a pullback diagram
and if h is a local isomorphism then so is /.

Proof. We shall only give the proof for the second part since
both parts are analogous. If (3.1) is a pullback then we may assume
that 21 is given by

2ί(U) = {(&, c) e^8(U) x (£(U) \ h(b) = k(c)} .

Moreover g and / are given by the projections on the first and second
factors respectively. We see that Ker/ = {(&, 0) | h(b) = 0} so that

(3.3) 0 • Ker/ — Ker h

is exact. Similarly, if ce&(U) and if k(c) e Im h then ce lm/, and
it follows that

(3.4) 0 > C o k e r / i Coker h

is exact. The contention follows from (2.4) applied to the exact
sequences (3.3) and (3.4).

COROLLARY 3.5. Let 35 and £ be precosheaves. Then the following
statements are equivalent:

( a ) There exist a precosheaf 21 and local isomorphisms 35 <—
2ΐ->(£.

(b) There exist a precosheaf S) and local isomorphisms 35 —•>
® — <£.

If one, hence both, of the conditions in (3.5) are satisfied then 35
and (£ are said to be equivalent. It is an easy consequence of (3.5)
and the following lemma that "equivalence" is an equivalence relation.

LEMMA 3.6. Composites of local isomorphisms are local iso-
morphisms.

Proof. Suppose 2ί > 35 — -̂> (£ are local isomorphisms. Clearly
we have the exact sequences

0 > Ker / > Ker gf-^-* Ker g

Coker / - ^ U Coker gf > Coker g > 0

and the contention follows immediately from (2.4).

As we have remarked above, locally isomorphic cosheaves are
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isomorphic. It is not so clear that this is also true for equivalent
cosheaves, but we shall, in fact, prove this fact later, in (5.7).

DEFINITION 3.7. A precosheaf is said to be smooth if it is equiva-
lent to a cosheaf.

We shall show later that for any smooth precosheaf 21 there is
an associated cosheaf 0(21) (unique to isomorphism) and a local iso-
morphism 0(21) —• 21. Also the functor Φ taking a smooth precosheaf
into this "associated cosheaf" will be shown to be a reflector from
the category of smooth precosheaves to that of cosheaves. For these
reasons one might prefer to substitute the terms "copresheaf" and
"precosheaf" for what we call "precosheaf" and "smooth precosheaf"
respectively, but we shall not adopt that terminology.

PROPOSITION 3.8. Suppose that we have a commutative diagram

2ί — a s

a

of precosheaves such that a and β are local isomorphisms. Then the
induced maps Ker fc—> Ker λ', Imh-^Imh', and Cokerh —> Cokerhf are
all local isomorphisms.

Proof. Denote kernels, images, and cokernels by $, $, and (£
respectively. Then we have the commutative diagrams

* α \e \c \β \γ

I I I I I I
Λ' >—> 21' — » ft' 3 ' >—> 33' — » <£'

which induce the exact sequences

0 —• Ker tt —> Ker a —> Ker c —> Coker tz —•> Coker a —> Coker c —• 0

0 —> Ker c —* Ker /9 -• Ker 7 -• Coker ^ —> Coker β -^ Coker 7 —• 0 .

By hypothesis we have that Ker a, Ker β, Coker α, and Coker β are
locally zero. It follows that Ker /c, Ker e, Coker r, and Coker 7 are
locally zero and that Ker c —* Coker tc and Ker 7 —• Coker ^ are local
isomorphisms. Since Ker<τ and Coker c are locally zero it follows from
(2.4) that their local isomorphs Coker tc and Ker 7 are also locally zero.
This proves the proposition.
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COROLLARY 3.9. Suppose we have a commutative diagram

a! a"
3Γ > 31 ̂ U 3ΐ"

sg' _ ί U 33 -^--> S3"

of precosheaves in which the verticals are local isomorphisms and
the compositions in the rows are zero. Then the induced map of
precosheaves

Ker α"/Im a! > Ker /3"/Im β'

is a local isomorphism.

REMARK 3.10. The reader should note that the analogues, in
sheaf theory, of the concepts "locally zero" and "local isomorphism"
are somewhat stronger conditions than the concepts which usually are
described by those terms. The exact analogues of the usual sheaf-
theoretic concepts are, in our opinion, inadequate for the attainment
of most practical aims in cosheaf theory, a fact which is traceable
to the unpleasantness of inverse limits.

4* Cech homology* Let 31 be a precosheaf on a space X and
let U = {Ui} be any (open) covering of X. We define the group of
Cech p-chains of the covering tt to be

where the sum ranges over all ordered (p + l)-tuples ζi0, , ipy of
indices and U(io, ,ip) stands for Uio Π Uh Γ) Π Uip. Note that
this is an exact functor of precosheaves 31. The differential

d: CP(U; 21) > C^fll; §1)

is defined by 3 — X,J=0 (— l ) ^ - where λ, is the canonical map

We also have the augmentation

ε: C0(Xt; 51)

given by ε = Σ iχ.vϊ θ ,
As usual the homology of the chain complex C*(ll; §1) is denoted

by
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and ε induces a homomorphism

; 31) > 3Ϊ(X) .

For an open set V c X, U fϊ V denotes the covering {^ ίl F} of V.
Thus

V\ >Hn(Uf)V;%)

defines a precosheaf on X denoted by §%(tt; §1) and

ε*:&(U;3I) > SI

is a homomorphism of precosheaves. Note that ε* is epimorphic for
all 11 if 31 is an epiprecosheaf and that ε*is isomorphic for all U if
SI is a cosheaf.

If 93 is a refinement of ΐt and SS-^U is a refinement projection

then there is an induced chain map C*(33; 31) —> C*(U; SI) and the

induced map H*(%$; SI) —> H*(VL; 31) is independent of the refinement

projection. (The reader map supply the details of these well-known

facts.) The Cech homology of X with coefficients in the precosheaf

31 is defined by

H*(X; SI) - lim H*(T1; SI)

(the limit taken over all coverings of X). Clearly

ξ>n(X-,vi):U\ >Hn(U;%)

is a precosheaf and there is the augmentation homomorphism

which is an isomorphism when 31 is a cosheaf.
For a covering U of X, the precosheaf

V\ >Cw(UnF;2l)

will be denoted by Kn(U; 31).

LEMMA 4.1. If % is a cosheaf then so is K%(U;3I). The latter
is flabby when 31 is flabby.

Proof. The reader may show that the direct sum of a family of

cosheaves is a cosheaf. But (£%(lt; 31) is the direct sum of precosheaves

of the form

V\
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(where U = U(i0, , Ό ) a n d these are easily seen to be cosheaves
when 2ί is a cosheaf. The last statement follows easily from similar
reasoning.

THEOREM 4.2. For a precosheaf 2ί the sequence

> έ a ( U ; §1) > ̂ ( 1 1 ; Si) > έ o ( U ; Si) > Si > 0

of precosheaves is locally exact for any covering XL of X.

Proof. It is clearly sufficient to prove that the sequence is exact
when X is a member of II since this condition is realized upon restriction
to any member of U. We shall in fact provide a splitting under these
circumstances. When X e l l define D: Cn(U; 21) — Cn+ι(U; 21) by the
"identity" %(Uio Π Π Ui%) — 2I(X n Uio n Π 27*J- < T h e naturality
of this definition provides such a homomorphism for the precosheaves
in question.) It is easy to check that

dD + Dd - 1

as was to be shown.

COROLLARY 4.3. If % is a flabby cosheaf then for any covering VL

of X we have $n(U; 21) - 0 for n>0. Consequently, &n(X; 21) = 0

for n > 0.

Proof. This is a direct consequence of (2.3), (4.1) and (4.2).

THEOREM 4.4. Let X be paracompact and let 21 be a locally zero
precosheaf on X. Then, for any covering U of X, there is a re-
finement S3 and a refinement projection SS-^U such that the induced
map Cn(%>; 21) -> Cn(U; 21) is zero for all n^O.

Proof. We may assume that 11 is locally finite and "self-indexing".
Let W be a "shrinking" of 11; that is a covering which assigns to
each [ / e l l a n open set U' with Όr c U. For each UeU and xe Ur we
choose an open set W = W(x, U) c U' with the property that whenever
U19 --,Un are in 11 and W Π V[ Π Π Ή ^ 0 then TF c ^ Π Π Un

and the map %{W) —* 2ί(£/1 Π Π U.Λ) is trivial. The existence of
such sets follows easily from local finiteness of ΐt and local triviality
of 2ί. We choose the refinement projection W(x, U) ̂ > U.

We claim that this covering satisfies the conclusion of the theorem.
In fact, suppose that
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and that WQ Π ΓΊ Wn Φ 0 . Then since

w0 n n wn c ui n n uf

n

we must have W{ c Uo Π Π E7» for each i = 0, , n and that
~+ 2ί(Z70 Π n tfj is zero. Since

••• nwn)—>2i(t/on ••• nun)
factors through 2I(TF0), it is zero, and this finishes the proof.

COROLLARY 4.5. // X is paracompact and if 21 is a locally zero

precosheaf on X then Hn(X; 21) = 0 for all n ^ 0.

COROLLARY 4.6. Let X be paracompact and let h:%—>S3 be a

local isomorphism. Then h*\ H*(X; §1)—• H*(X', S3) is an isomorphism.

Proof. Clearly this reduces to the two cases in which Coker h = 0
or Ker h = 0. These cases are similar and we shall confine our attention
to the first. Thus let 0-^->2I->23-+0 be exact with $ locally zero.
For each covering II of I we have the exact homology sequence

> Hn(U; ffl) > Hn(U; 21) > Hn(VL; S3) > Hn^(U; ft)

Using (4.4) and the following lemma we see that the induced map

Hn(X; 21) -> Hn(X; 33) is an isomorphism.

LEMMA 4.7. Let {Aa, fa>β), {Ba, gatβ}, {Ca, ha,β} and {Da, ka,β} be
inverse systems of abelian groups and let

Aa > Ba > La > Da

be exact sequences commuting with projections. Assume that for
each a there is a β > a such that fa,β: Aβ —> Aa and ka,β: Dβ —> Da are
zero. Then the induced map

μ: lim Ba > l im Ca

is an isomorphism.

Proof. Let {ba} be the coordinates of an element of lim Ba which

is in the kernel of μ. Then μa{ba) = 0 for all a and thus ba — λα(αα)
for some aaeAa. By hypothesis there is a β > a such that faβ =
0 = kaβ. Thus ba = ^ ( δ s) = gaβ(λβ(aβ)) = Xa(faβ(aβ)) = 0 which shows

that μ is monomorphic.
Now let {ca} be a point in lim Ca. With β as above we have
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Va(ca) = K(haβ(Cβ)) = kaβ(vβ(cβ)) = 0 so t h a t cα = μα(&y for some 6; e Ba.
Let /9 be as above (in relation to the given a) and let 7 > β be
arbitrary. Note that bβ = ^ r (δ ' ) (modulo Im λp) since μ^ takes them
to the same thing. Applying gaβ we obtain gaβ(b'β) = gar(b'r) since
gaβXβ = λα/α/3 = 0. Let &α be this common element gaβ(b'β) for β > a
large. Clearly we have ^r,δ(δδ) = δr for any δ > 7 so that {ba} is in
lim Ba. Also μα(&α) = μa(gaβ{br

β)) = haβ(μβ(b'β)) = /^(ty) = cα which shows
that μ is epimorphic and completes the proof.

5* The reflector. For a precosheaf 31 on X we define the
precosheaf 0(31) by

0(31) = 4 ( X ; 21)

where SI is t h e maximal epiprecosheaf in SI of (1.5). Clearly Φ is a
functor. There is a natura l homomorphism

—>2ί

given by the composition

Clearly <p(2I) is an isomorphism when 31 is a cosheaf.
If h: 21 —• 33 is a homomorphism then we have the induced homo-

morphism Φ(h): Φ(2Ϊ)—>0(S5). The following is a basic result:

THEOREM 5.1. If /z,: 2t —> 33 is a local isomorphism of procosheaves
and if either 31 or 33 is a cosheaf then Φ(h) is an isomorphism of

onto

Proof. First assume that 21 is a cosheaf. Note that <P(UB) = 0(33).
Also fe(3I) c i since fe(2I) is an epiprecosheaf. Clearly h: 31—>S is also
a local isomorphism. Thus we may assume that 33 = 33, that is, that
33 is an epiprecosheaf. Coker h is then also an epiprecosheaf and,
being locally zero, it is zero. Let $t = Ker h.

Let 11 = {Ui} be a covering of an open set U a X so fine that
St(Ui) —>$(Z7) is zero for all Z7< e U. Consider the commutative diagram

a I ^ ' ' !

SC(C/) — » SB(Ϊ7)

0 α I 5
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which is exact except for the right hand column. We see that
Ker a z) Ker β so that the additive relation λ = aβ~ι is single valued
and hence is a homomorphism. Clearly λ is onto and diagram chasing
shows that Ker λ = /3(Ker a) = Im 7. Thus we have the induced iso-
morphism

A: HQ(Vi; 33) - Ξ - %(χj) ~ H0(Vi; 21) .

It is clear that A is an inverse of the natural map

K(U) : HQQ1; 2ί) > H0(U; 33) .

Thus h*(U) is an isomorphism and, upon passage to the limit over
U, we see that Φ(h)(U) = Km fe*(U) is an isomorphism, as was to be
shown.

Now suppose that 33 is a cosheaf and that 31 is arbitrary. Again
Coker h is an epiprecosheaf and hence it is zero. Let & = Ker h as
before. Fix an open set U c X for the time being and choose a
covering {U,} of U such that each St(Ui)->®(U) is trivial. Let
A= Im{©2I(C/,)-+ 2I(£/)}. Now the maps 0 3 I ( ^ ) —033(^)--->33([/)
are onto so that A-^^8(U) is onto. Consider the diagram

—y>

I I
A —» 33(£7)

in which the rows and the right hand column are exact. Diagram
chasing reveals that the left hand vertical map is onto and hence
that ®(Ϊ7) Π A = 0. Thus the map A—>33(?7) is an isomorphism. It
follows that a refinement of {Ui} yields the same subgroup A of
2I(ί7). Thus in fact, in the notation of the proof of (1.5), A = 2I1(ϋ7)
which is the set of elements of 21(27) in the image of 021(?7,)->2ί(ί7)
for every covering {J7J of U. This shows that 2IX —•> 33 is an isomor-
phism and, since 33 is a cosheaf, 2ίx = 21 is a cosheaf. Thus

h: 0(21) = S — 33 - 0(33) .

The proof of the latter part of theorem shows more:

THEOREM 5.2. Let h: 21—+33 be a local isomorphism and suppose
that 33 is a cosheaf. Then there exists a local isomorphism k: 33 —>
21 ŝ c/z, ί/iαί hk — 1.
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Proof, k is merely the inverse of the restriction 21 —> 35 of h

(followed, of course, by the inclusion 21 —*2X). We have the split

exact sequence

h

0 >β > 21 ; = ί 3 3 >0
k

and it follows that Ker k = 0 and that Coker fc ̂  Ker λ, = $ is locally
zero, so that k is indeed a local isomorphism.

COROLLARY 5.3. If a precosheaf 21 is equivalent to a cosheaf 33
then there is a local isomorphism 93 —> 21.

COROLLARY 5.4. 1/ ίfee precosheaf 21 is equivalent to a cosheaf
(i.e. if it is smooth) then Φ(%) is a cosheaf and <p(2I): Φ(2ί)—*2l is α
ίocαi isomorphism.

Proof. By (5.3) there is a local isomorphism h: S3 —* 21 for some
cosheaf 33. We have the diagram

S3 — • St
h

By (5.1) Φ(h) is an isomorphism and hence Φ(%)-^% maybe identified
with /M S3 —> 31 and the result follows.

COROLLARY 5.5. Let ^ be the category of cosheaves on X and
Sf the category of smooth precosheaves (3.7). Then Φ is a reflector
[9] from Sf to if.

COROLLARY 5.6. // h: 21—>33 is a local isomorphism where 21, 33
are smooth then Φ(h): <£(2ί) ̂  0(33).

Proof. By (5.3) there is a cosheaf (£ and a local isomorphism
k: <£, —> 21. The diagram

21 * — > »

\

consists of local isomorphisms. In the induced diagram
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0(21) > 0(33)

the diagonals are isomorphisms by (5.1) and hence Φ(h) is also an iso-
morphism.

COROLLARY 5.7. If 2ί and S3 are cosheaves which are equivalent
then they are isomorphic.

PROPOSITION 5.8. If 21' -—> 2X —> 21" is a locally exact sequence of
smooth precosheaves, then 0(2ί') —> 0(21) —• 0(21") is also locally exact.

Proof. Apply (3.9) and (5.4) to the diagram

• 0(2ί)

21' > 21 > 21"

REMARK 5.9. Not every precosheaf is smooth. For a simple
example let X be the unit interval and let 21 be the precosheaf on
X which assigns to U the group of singular 1-chains of U. The
associated epiprecosheaf 21 clearly has 2ί(ϊ7) equal to the subgroup
generated by the constant singular 1-simplices. The inclusion 21 —• 21
is clearly not a local isomorphism and it follows that 0(21) —• 2ί cannot
be a local isomorphism. This would contradict (5.4) if 21 were smooth.

REMARK 5.10. If 21 is a smooth precosheaf then the inclusion

21—> 21 is a local isomorphism. Thus, if X is completely paracompact,

then it follows from (4.6) that the induced map 0(21) = !QO(X; 21) ->

&o(X; 2ί) is an isomorphism. This probably does not hold without the

paracompactness assumption. We also remark that the (exact) analogue

of 0 in the theory of eshaves is the coreflector assigning to any

presheaf its associated sheaf, and similarly the analogue of feo(X; 21)

is the "completion" of a presheaf in Spanier's terminology [10, p. 325],

REMARK 5.11. Constant precosheaves on locally connected spaces
are smooth. For this see the first part of § 9 in which the local compact-
ness condition is unnecessary. The associated cosheaves are called
constant cosheaves.

6* Spectral sequences* As usual a differential cosheaf is a
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sequence {2IJ of cosheaves together with a "differential" d: % —> 2Iί_1

with d2 = 0.
Let 21* be a flabby differential cosheaf which is bounded below

(i.e. %i — 0 for ί < iQ some i0). Given a covering U of X consider
the double complex

J-Jpyq ^p\^f ~^q)

There are two spectral sequences of this double complex. In one of
them we have the Ep,q-term

>H(L ) = H(U- 2ί ) = \%v{X) f 0 Γ ? = °

by (4.3). Thus the JE^-term is

for q = 0

for q Φ 0 .

Since this spectral sequence degenerates we have the natural iso-
morphism

where L* is the total complex of L*,*.

In the other spectral sequence we have

El,q = "H (Lp,*) = CPQ1; ξ)g(2ϊ+))

and hence
τp2 _ fj /rr. gs /or \\

By the assumption that 21* is bounded below this spectral converges
to H*(L*). Thus we have a spectral sequence £^(11) with

(6.1) E2

p>q(U) = HP(U; Φ g ( 2 ί J ) = > Hp+q{%*{X)) .

These spectral sequences are clearly functorial in the coverings II as
well as in 21*.

7* Coresolutions* By an N-coresolution of a cosheaf 21 we
mean a differential cosheaf 21* together with an augmentation ε: 2I0—>2I
such that the sequence

is locally exact. Note that, by (2.1), the portion % —> 2ί0 —> 21 —• 0 is
actually exact. [We remark that everything we do remains valid if
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we replace the statement "iV-coresolution on X " by "(N— l)-coresolution
and HN($ίχ(U))—> HN($ί*(X)) is trivial for some basis of open sets
UaX") see the remark (10.5).]

In this section we will fix an N ^ 0 and assume that 21* is a
flabby iV-coresolution of a given cosheaf §1 and shall study the spectral
sequences (6.1). We also assume that X is paracompact.

LEMMA 7.1. If VL is sufficiently fine then the natural projection
+E~0(VL) is an isomorphism for all n ^ N.

Proof. Given any covering U we can find by (4.4) a refinement
XV such that Elq(XV) -> Elq(U) is zero for all p, q with q Φ 0 and
V + q ^ N. It follows that E;tq(lV) -> E;>q(U) is zero for all r ^ 2.

Now recall that Hn(^(X)) is filtered by submodules

such that ££n_p(U) ~ Jp/Jp^. Similarly Hn(%*(X)) is filtered by J'p
with Jp/Jp^ & E~n_p(W). Since the refinement has no effect on
Hn(Ά*(X)) we see that it induces an isomorphism J'n —* Jn and that
for p < n, Jp—> Jp has image in Jp_x (and, of course, is a mono-
morphism). It follows that Jo' = 0. A similar argument on a similar
refinement U" of XV will show that J" = 0, etc. Thus U may be
assumed to be so fine that Jp = 0 for all p < n. This implies the
desired result.

Returning to the general discussion, let 11 = Uo be as in (7.1) for
some fixed n ^ N. Construct refinements 1X̂  of U ^ for i = 1, 2, , n
such that

is trivial for all p, q with ^ + q ^ w and g Φ 0.

We see that the image of E%,0(Xln) —> ^^(U^.i) consists of c?2-cycles
and hence induces a homomorphism

similarly we obtain homomorphisms

# s,o(ϊt-i) > EUK-z) >

This provides the commutative diagram
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Hn(Un; 21)

21)

\ \ «

\

[We remark that this diagram exists for n = AT + 1, except that the
right hand maps are then only epimorphisms.]

Letting Un = IT this yields a diagram

HnQl; 21) ^

where j is the refinement projection, the λ's are edge homomorphisms,
and μ is induced by the diagonal composition in the last diagram.
Checking the definitions we see easily that we have the following
commutativity relations:

It follows immediately that λ' is a monomorphism and that

Im j = Im λ .

Clearly we may assume that U is also so fine that λ is a monomor-
phism and it follows that

j : Im λ' —̂ -» Im λ .

These considerations prove, in particular, the following result:

THEOREM 7.2. Let X be paracompact and let 21* be a flabby
N-coresolution of a cosheaf 21 on X. Then for n rg N the edge
homomorphisms Xn: Hn(%*{X)) —> Hn(U; 21) of the spectral sequences
(6.1) induce an isomorphism in the limit over U:

Xx ; 2Ϊ) .

In fact we have shown that if 11 is a sufficiently fine covering
of X, then Xn: Hn(^ί^(X)) —> Hn(VL; 2ί) is a monomorphism onto the
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image of the canonical projection

π: Hn(X; SI) > Hn(U; SI)

and, moreover, that TΓ is a monomorphism. Moreover, given this U,
then for any sufficiently fine refinement IT of II we have Imj =

Im λ = Im π and j : Im λ' —̂ -> Im λ. The notation is as in the dis-
cussion above (7.2).)

REMARK 7.3. It might be thought that, in (7.2), λ is an epimorphism
in degree N + 1, but this is not generally true. An interesting
counter-example, in the application to singular homology, is given by
Mardesic in [8]. One can easily see, however, that for every covering
II of X the images of HN+1(%*(X)) and of HN+1(X; SI) in f W ϊ t ; SI)
coincide.

8* Relative homology • To this point we have restricted our
attention to absolute homology in order to maintain reasonably
uncluttered notation. In this section we shall show how the results
of the last two sections can be extended to the relative case.

Let AdX be an arbitrary subspace. For a precosheaf SI on A
we define a precosheaf SI1' on X by

%X(U) = SI(C/Π A) .

Note that 3ίx is a cosheaf if and only if SI is and that it is flabby
if and only if 31 is.

A covering of the pair (X, A) is a pair (U, Uo) where II is a
covering of X and 1 I O C U covers A in X. If SI is a precosheaf on
A then we have the obvious isomorphism

(8.1) <5*(U0; SF) ^ C*(U0 n A; 31)

where tt0 n A = {U Π A \ UeU0}.
Suppose that 31 and 33 are precosheaves on A and X respectively

and that we are given a monomorphism of precosheaves

ΎJ\ 3IX >—> 33 .

We obtain the induced monomorphism

C*(1IO n A; 31) >—> C*(U0; 33)

and shall denote its cokernel by

C*(U, Uo; 33, SI) .

Thus we have the natural exact sequence
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(8.2) C*(ϊt0 n A; SI) >—-> C*(U; SB) >—•> C*(U, Uo; 95, 2ί)

of chain complexes. As usual we denote the homology of this chain
complex by

H*(U, Uo; 33, 21)

and obtain from (8.2) the usual long homology sequence. The inverse
limit over refinements of pairs of coverings yields, as usual, a group
denoted by H*(X, A; 33, 21).

Now assume that 31 and 33 are flabby cosheaves. Then (4.3),
applied to the homology sequence of (8.2), yields the conclusion that
Hn(U, Uo; S3, 2ί) = 0 for n > 1 and yields the exact sequence

0 > HW, Uo; S3, 21) > HOQ1O Π A ; 21)

> H0(ll; 23) > HQ{U, t t 0 ; S3, 21) > 0 .

The two middle terms of this sequence are canonically isomorphic to
%x and 33 respectively with η as the homomorphism between them.
Thus, by assumption, we have

(0 for n > 1
(8.3) Hn(U, tt0; S3, 21) ~

(Coker η: 2ΐx > 35 for n = 0

when 2ί and 23 are flabby cosheaves.
Now suppose t h a t 21* and S3* are flabby differential cosheaves on

A and X respectively, which are bounded below. Also suppose that
we are given an exact sequence

0 > 2If > 33, > <£„ > 0

(defining (£*) of differential cosheaves.

Given the pair of coverings (U, Uo) we consider the double complex

(8.4) LP i ί(U, Ho) - CP(U, Uo; 33,, 21,) .

As in § 6 it follows immediately from (8.3) that there is a natural
spectral sequence E;tq(U, UQ) with

(8.5) EM n0) = "Hq{Lp,*{VL, Uo)) .

and

(8.6) EUU, nQ) = Ήp"Hq(L*,*(U, U0)) => Hp+q(^(X)) .

Now we suppose that 21* and S3* are flabby ΛΓ-coresolutions of
cosheaves 2ί and S o n i and X respectively. (Note that, unless A
is closed, it does not generally follow that (£* is a coresolution of
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Coker(2Ix~-->33).)
Exact sequences of the form (8.2) yield, for the "H homology,

the exact sequence

> CP{UO n A; §,(21*)) > CP(U; §,(33*)) > EM Uo) >

> CP(VL; ̂ (33*)) > EM 1XO) > CP(UO n A; §0(2I*)) = 0

(here §O(2Ϊ*) = Ker {§0(2I*) -»2t} = 0). Moreover we have the exact
sequence

(8.8) CP(UO Π A ; 21) > CP(U; 33) > ^ , 0 (U, 1XO) > 0 .

By (8.8) we have

71 ill VL) — C (Vί 11 SB 9J\

Moreover if X and A are both paracompact then, by (8.7) and (4.4)
(twice), there exists a refining pair (33, 230) of (II, Uo) and a refinement
projection such that the induced homomorphism

is trivial for all p and all q Φ 0 (with p + q ^ N).
We now have all the information necessary to repeat the argu-

ments in § 7 word for word. The final result is the following
extension of (7.2):

THEOREM 8.10. Let A a X both be paracompact and let 2ί* and
33* be flabby N-coresolutions of cosheaves 21 and 33 on A and X
respectively. Suppose 0 —• 2IJ —> 33* —> K* —> 0 is an exact sequence
of differential cosheaves. Then for n fg N the edge homomorphisms
Hn(&tχX)) —•* E%,o(VL, Uo) = iϊπ(ll, Uo; 33, 21) of the spectral sequences
(8.6) induce an isomorphism in the limit over (U, tt0):

We note that it is also easy to see that, via (8.10) and (7.2), the
exact sequence

is identified with the sequence

>Hn(A; SI) >Hn(X; 33) >Hn(X, A; 33, 21) >Hn_U, 21) >•

which is the inverse limit of similar exact sequences of the appropriate

Cech groups of coverings. In particular, it follows that this homology
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sequence is exact, a fact that clearly limits the possibilities of the
existence of the hypothesized coresolutions. This question will be
taken up in later sections.

By introducing compact carriers in the Cech theory we may
replace the paracompactness condition in (8.10) by a local compactness
condition. The idea for doing this is due to Mardesic [8]. It involves
the observation that any compact set in a locally compact space is
contained in an open relatively compact Fσ (and hence paracompact)
set.

We define, for (Xf A) a, locally compact pair,

Hi(X, A; 33, Si) = lim Hn(U, V; 33, SI)

where U and V c U Π A range over the open, relatively compact,
subsets of X and A respectively. By the above remark we may also
assume that U and V are paracompact in this limit. By making the
elementary observation that, for any cosheaf (£, (£(X) & lim (£(Z7), U

relatively compact, [and hence Hn(&*(X)) p& lim Hn(&*(U))] we obtain

the following corollary of (8.10):

COROLLARY 8.11. With the same hypotheses as (8.10) except that
(X, A) are assumed to be locally compact rather than paracompact,
we obtain the canonical isomorphism

Hn(&*(X)) ^ H&X, A; 33, 21) .

We wish to generalize (4.6) to the relative case. Thus assume
that SI15 3I2 are precosheaves on A and 33,, 332, on X and assume that
homomorphisms SIf >-> 93*, h: 2tx —> 2I2 and /c: S3X •—> S32 are given such
that

gp > ςg

h

commutes. Then we have:

PROPOSITION 8.12. If (X, A) above is a paracompact (respectively,
locally compact) pair and h and k above are local isomorphisms, then
the induced map

H*{X, A; 33,, SI,) > H*{X, A; 352, SI2)

is an isomorphism (respectively, the same for the groups H%).
The proof is essentially the same as that of (4.6) and will not be

repeated.
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9* Borel-Moore homology* In this section we confine our at-
tention to locally compact spaces and take the base ring L to be a
principal ideal domain. We use the notation H%{X\ j y ) for the
Borel-Moore homology with compact supports and with coefficients in
the sheaf j ^ ; see [1, Chap. V].

The constant cosheaf 8 is the precosheaf assigning to U the free
L-module on the components of U and for an L-module M the associated
constant cosheaf SK is defined by Tt(U) = 8(Z7) ® M. Summation
yields a homomorphism 3K —•> M of precosheaves (where M{ U) = M)
and it is clear that this is a local isomorphism if X is locally con-
nected. Thus Φ{M) p** 3R when X is locally connected.

We wish to associate with every sheaf j y on a locally connected
space X a certain associated cosheaf on X.

PROPOSITION 9.1. Let X be locally connected (and locally compact).
Then for any sheaf j y on X, the precosheaf i?o

c( ; *$/) is a cosheaf.
If X is clci, or if L is a field, and if s^f — M is constant then this
cosheaf is the constant cosheaf Tt = Φ{M).

Proof. Let ^ = ̂ P(X) L) be the sheaf of germs of Borel-Moore
p-chains as defined in [1, p. 184], and let J%Γ = Ker {d: Sf0 —> J^L,}.
The proof of Theorem 5.12, p. 201 of [1] shows that St (g) JV is
c-soft and that the sequence

is exact, so that the first term consists of the zero-cycles of U.
Thus we have, by definition, the exact sequence

ΓC(J^ ®S^\U) > ΓX^ί <g) j y I C7) > ΐίo

c([/; j y ) > 0 .

Since the first two terms are cosheaves [1, p. 176] the last is also
a cosheaf by (1.1). The last statement follows immediately from
(V, 5.11) and (V, 3.10) of [1].

This proposition is used only in case s/ is locally constant and,
then, merely to prove the existence of a related "locally constant"
cosheaf.

From the proof of (9.1) we see that, when X is locally con-
nected, the canonical Borel-Moore chain complex C%{X\ JZ?) [i.e.
ΓC(^(X; Z/)®,jy)] may be replaced by a chain complex vanishing in
negative degrees, without altering the homology. That is we define

if v > 0

Ker {Coc(C7; J*O > CU{U\ j ^ ) } if p = 0

0 if p < 0
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and note that, by the proof of (9.1), the precosheaf

& ): U\ > C;(U;

is a flabby cosheaf.
Now suppose A c X is also locally connected. By general results

in [l, V. 5] we have an exact sequence

0 > ®;(A; J ^ I A)x > &P(X; Sf) > &P(X, A; j&) > 0

(which defines the right hand term).

P R O P O S I T I O N 9.2. If X is hlcN

L a n d if s/ is locally c o n s t a n t ,

t h e n @?*(X; j y ) is a flabby AΓ-coresolution of t h e cosheaf i?o

c( ;

Proof. It is required to show that the precosheaf

U\ >Hi(U

is locally zero for 0 < n ^ N. For j^f = L this is true by definition
[1, p. 253], For j ^ = M, any constant sheaf, the result follows from
the universal coefficient formula [1, p. 188]. The locally constant case
follows immediately.

Now from (9.2), (8.10), and (8.11) we immediately obtain the
following result:

THEOREM 9.3. Let A c X both be locally compact and hlc%. Let
Sf be a locally constant sheaf on X. Then for n ^ N we have a
canonical isomorphism

H°(X, A; JV) ^ Hc

n{X, A; H0°(.

If X and A are also paracompact, then these are isomorphic to

[Technically the coefficients on the right should be the pair

COROLLARY 9.4. Let A a X be locally compact and hlcL

N and let
M be an L-module. Then for n ^ N and N ^ 1

HZ(X, A; M) ̂  Hi(X9 A; M)

and, if A, X are both paracompact, these are isomorphic to Hn(X, A; M).

Proof. Again the coefficients in the Cech theory should technically
be in the pair M, M. Also, as before, the general case follows from
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the paracompact case.
Now, on X, the constant cosheaf Φ{M) associated with the constant

precosheaf M is just HQ( M) and it is locally isomorphic to M (and
similarly on A). Thus, by (8.12), we have

Hi(X, A) M) ~ Hl{X, A; H!( ; M))

(and similarly for the paracompact case) and the corollary follows
from (9.3).

REMARK 9.5. If the base ring L is a field, then the first part
of (9.4) is true without the condition hlc* since both theories are
continuous in that case. This is false for general L however. Also
recall that there are the implications clcN+1 ==> hlcN => clcN; see [1] for
definitions and references.

Since writing this paper the author has discovered that (9.4) had
been previously proved by Jussila in [5]. Remarks similar to (10.5)
are also applicable to this case. Also see [1, 7] for related results.

10* Singular homology* For locally compact spaces we may
combine the results of the preceding section with those of [1, pp. 219-
231] to obtain similar facts about singular homology. For general
spaces we must proceed more directly.

We shall recall some constructions from [l, Chap. V]. Our
approach here differs from that of [1] as regards coefficients. (Both
here and in [1] the approach to coefficients is dictated by the methods
used.)

Let J^f be any sheaf on the (arbitrary) space X. The singular
chain group of U in degree n and with coefficients in s/ is defined by

where the sum ranges over all singular simplices σ: Δn —> U of U and
σ*s*f denotes the induced sheaf on An. If e: An_x—+An is a face map
then we have an induced homomorphism

and it follows that the boundary operator

may be defined in the usual way.
Similarly the barycentric subdivision operator

sd: Sn(U;
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may be defined, via the continuous map sd(Δn) —> An, and it may be
shown, as usual, that sd is chain homotopic to the identity. (See,
for example, [10, p. 177].)

Let Sii} be copies of Sn(U; S>/) for i ^ 1 and consider the direct
system

where the maps are the subdivision homomorphisms sd. We denote
its direct limit by

and note that the natural map

Sn(U; J>r) = S™ _ ^

induces an isomorphism in homology, since

whence

The resulting (singular) homology group will be denoted by

It is clearly the classical singular homology group when jzf is constant.
Now it is easy to see that @W(X, J>/) is a flabby cosheaf on X.

(This is most easily seen by using the criterion of (1.3).)
For AaX we have an exact sequence

&n(A; Λf I A)x >—» &H(X; JV) —» &n(X, A; j ^ )

where the right hand term is defined in the same way as the absolute
terms. For details on this see [1, p. 180]. By (1.1) the relative term
@Λ(X, A; Stf) is a cosheaf and it can be seen (loc. cit.) that it is flabby.

Now, by definition, we have an exact sequence

&AX; <s>r) — > @0(X; sf) — > Ά{ - jy) — > o

of precosheaves on X. By (1.1) it follows that AHQ(-;J^) is always
a cosheaf. If JV = M is constant then clearly dH0( M) is only a
slight variant of the "constant cosheaf" W defined in the last section.
They are the same when X is locally arcwise connected. For general
X one might call this the "singular constant cosheaf associated with
M."
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LEMMA 10.1. // X is HLCN and if Ssf is locally constant then
is a flabby N-coresolution of the cosheaf ΔH0(

Proof. We must show that the precosheaf ΔHn( s^f) is locally
zero for 0 < n ^ N. For s$f — Z this is the definition of the property
HLCN, and for szf constant it follows from the universal coefficient
theorem. The locally constant case obviously follows from the constant
case.

From (10.1) and (8.10) we obtain immediately:

THEOREM 10.2. Let AaX both be paracompact and HLCN. Let
J^f be a locally constant sheaf on X. Then there is a canonical
isomorphism for n ^ N:

ΔHn(X, A; j&) ** Hn(X, A; ΔH,{

Similarly, from (8.11) we obtain:

COROLLARY 10.3. Let A c X both be locally compact and HLCN.
Let Ssf be a locally constant sheaf on X. Then for n ^ N

ΔHn(X, A; j>f) ~ Hc

n{X, A) ΔH0(.;jy)) .

Again the following result is proved in the same manner as is
(9.4):

COROLLARY 10.4. Let Ad X both be paracompact (respectively,
locally compact) and HLCN. Let M be any abelian group. Then

for n £ N

ΔHn(X, A; M) ~ Hn(X9 A; M)

(respectively, P&H&X, A) M)).

REMARK 10.5. This latter result was first proved by Mardesic [8]
who proved the isomorphism under the slightly weaker hopothesis in
the paracompact case that A and X are HLCN~ι and have neighbor-
hood bases projecting homologically trivially into the total space in
degree N (singular homology). The present proof can also easily be
extended to this case but we have chosen, for simplicity of terminology
not to do this. (We only note that to achieve the extension one
takes the original covering U in the proof of (7.1) to be {X}.) The
reader should note that when the present proof is stripped of all
the nonessential material it is, in fact, a very efficient proof which
avoids the intricate refinement arguments of [8]. Essentially, these
intricate details are subsumed in the general theory.
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11* Acyclic coverings* In this section we shall confine our
attention to absolute homology.

Let 3ί* be a flabby differential cosheaf with nonnegative degrees
and let SI = Coker {Ŝ  —> Sϊo}. Consider the spectral sequence (6.1) for
a covering U of X:

Elq(U) - HP(U;

We have the canonical edge homomorphism

λu: HMΛX)) > Hn(U; SI) .

The following result is immediate:

THEOREM 11.1. // each finite intersection U of members of 11
has Hq($ί*{U)) = 0 for q Φ 0, then λu is an isomorphism in each
degree.

For Borel-Moore homology we have

COROLLARY 11.2. Let It be a covering of the locally compact
and locally connected space X such that for each finite intersection
U of members of U we have Hq(U; Szf) = 0 for q > 0, where Jzf is
some given sheaf on X. Then there is a canonical isomorphism

Hc

n{X; Λf) ^ Hn(VL; Ho

c(.;

For singular homology we have

COROLLARY 11.3. Let U be a covering of the space X such that
for each finite intersection U of members of 11 we have jHq(U; Sf) = 0
for q > 0, where j ^ is some given sheaf on X. Then there is a
canonical isomorphism

12* Applications to maps* In this section we shall consider a
continuous map

f:E >X.

For a precosheaf S3 on E we define its direct image /S3 on X by
(/»)([/) = ^{f~ιU) (see [l, p. 179]). Clearly /SB is a cosheaf when
S3 is and is flabby when 33 is. If 23* is a flabby differential cosheaf
on E then 21* = /S3* is one on X Thus the spectral sequence of
(6.1) has
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El,q(U) = HP(U; /£,(»*)) — Hp+qφ

natural in coverings U of X.
In particular, for Borel-Moore homology (where E is locally

compact) we have spectral sequences

El,q{U) = HP(U; H if-^ ); j ^ ) ) ~ H;+q(E; JV)

natural in coverings U of X and sheaves j y on E.
Similarly, for singular homology, we have spectral sequences

EMU) = HP(U; ΔHq(f-\-y, <S>f)) — ,Hp+q(E;

natural in coverings U of X and sheaves s/ on E.
We shall now prove a generalization of (7.2). Suppose that 2ί*

is a flabby differential cosheaf with §Ift = 0 for w < 0 (or generally
with degrees bounded below). Suppose, moreover that we are given
integers 0 ^ k < N such that

(12.1) §g(2I*) is locally zero for all qφk, q ^ N .

Let Qn = Ker {dn: %n — S t ^ } . Then by (2.3)

21* > §!,_, > > 2ί0 > 0

is exact and

Sk is a flabby cosheaf.

Moreover, it is clear that

2t*+1 > > 2I, + 1 >Qk > ^ ( 2 Ϊ J , 0

is locally exact. Thus, under the hypothesis (12.1), we see that
Φ*(2Ϊ*) is a cosheaf and that the differential cosheaf 2Γ*, defined by

(0 q < 0

1 * 0 = o
+ g Ϊ > o

is a flabby (JV — A:)-coresolution of φ
By (7.2) [and (8.11) in the absolute case] we obtain:

THEOREM 12.2. Let X be paracompact (respectively, locally
compact) and let 31* be a flabby differential cosheaf on X with
degrees bounded below such that (12.1) is satisfied. Then there is
the canonical isomorphism
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for n ^ N. (Respectively, with Ή.c

n_k in place of Hn_k.)

Now we return to the discussion of a map f: E—+ X and we let
EoaE be any subspace. Applying (12.2) to the flabby differential
cosheaf f&UE, Eo; j y ) we obtain:

COROLLARY 12.3. Suppose that X and (E, Eo) are locally compact,
that s^ is some sheaf on E and that there are integers k < N such
that for q ^ N, q Φ k we have that the precosheaf

on X is locally zero. Then this precosheaf is zero for q < k and is
a cosheaf for q = k. Moreover, we have a canonical isomorphism

Hi(E, EQ; j y ) ~ H:_k(X; HUf-^ ), f-1^) Π EQ;

for n ί£ N.

Similarly applying (12.2) to f&*(E, Eo; j y ) we have

COROLLARY 12.4. Suppose that X is paracompact (respectively,
locally compact), that s?f is some sheaf on E and that there are
integers k<N such that for q^N,qφk we have that the precosheaf

ΔHq(f~ι( ), f"\ )Γ\E^ j y ) on X is locally zero. Then this precosheaf
is zero for q < k and is a cosheaf for q — k. Moreover, there is a
canonical isomorphism

Δ
ΔHn(E, Eo; j y ) ~ Hn_k(X; ΔHk(f~\ ), f~\.) Π Eo;

for n ^ N (respectively, with H^-k replacing Hn-k).
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