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On a planar bordered Riemann surface W, a weakly Λ-valent
function is one whose every image point has at most λ anti-
images. In this note, extremal properties characterizing weakly
Λ-valent principal functions are developed. The functionals
extremized are, in a rather natural way, analogous to those
of the univalent cases. However, the class of competing
functions consists not only of weakly Λ-valent analytic functions
on W9 but of all analytic functions which are Λ-valent near
an interior point ζ e W and near the isolated border γ of W9

and are of arbitrary finite valence elsewhere. Such competing
classes contain the Λ-th powers of competing univalent functions,
as would be expected. That these classes contain functions of
arbitrary finite valence perhaps would not be anticipated.

An interpretation is given for that situation in which the
competing classes consist of those analytic functions which are
Λ-valent near two isolated border components.

Since the slit mapping Fo of [5] maximizes among univalent

functions of class A, the functional 2π log r(F) — \ log | F(z) \ d arg F(z),
}β

it follows that Fo\ interpreted as the λ-th power of Fo, maximizes
the functional Ψ(F) = 2πX log r(F) - \ log I F(z) I d arg F(z) among all

}β
λ-th powers of functions in A.

It would seem rather a natural question to ask whether the weakly
λ-valent canonical maps F£(z) and Fί(z) of [3] extremize such functionals
Ψ(F) and Φ{F), not only in a class of λ-th powers of univalent maps, but
also in a class of weakly λ-valent mappings, whose behavior near the
border and near a preselected interior point ζ, is analogous to that
of functions in A. The answer to this question is essentially in the
affirmative, and indeed, for a surprising reason. Namely, the functions
of class A, in which Ψ and Φ are extreme, are required to be λ-valent
only near 7, the border of W and near ζ, an interior point of W — {7}.
The valence of such functions is arbitrary elsewhere on W, and certainly
this class contains the weakly λ-valent functions.

Similar results will hold if the bordered surface has two border
components as, for instance, in [2]; namely, the class of functions
over which one may extremize is essentially that class of functions
which are λ-valent near the border components. And the valence of
the competing functions, elsewhere on the planar bordered Riemann
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surface, is arbitrary.
However, the functional extremized by the λ-th principal function

Ff(z) is slightly different than anticipated. It does, however, reduce
to the anticipated functional when special cases such as those of [5]
or [2] are considered.

2* Notation and constructions* In order that the notation be
consistent with that of [3], we consider, on the one hand W, a planar
bordered Riemann surface with an isolated compact border component 7,
and a point ζ, belonging to the interior of W — {7}. On the other hand,
we consider a planar bordered surface V with two compact isolated
border components 7 and 3. In the development, we shall deal with the
surface W, but shall be able to make interpretations in terms of the
surface V.

As usual, W is exhausted by a sequence of approximating bordered
surfaces {Wn}> each compact, and of finite connectivity. Furthermore,
for each n, Wn has ζ as an interior point, 7 for one border component,
and βn as the union of the remaining border components βl9 •• ,/3M%).
We shall be concerned with the following class of functions defined
on Wn.

DEFINITION. The class Hn(X) is the set of functions p(z) harmonic

on Wn — {ζ} such that (i) p(z) = const. = c(p) for z e 7 and \ dp* = 2πX,

(ii) the function h(z) = p(z) — X log ] z — ζ | has a harmonic continua-
tion to ζ, with h{ζ) = 0.

By the construction of [4] already employed in [3], we find, in
the class Hn(X), the functions pin(z) and pλ

ln(z). The first of these has
its normal derivative dpljdn equal to zero on βn, while the second
has constant value cβi(p{n) on each component βt of βn, with

Furthermore, these functions are characterized in Hn(X) by the follow-
ing extremal properties.

3* Extremal properties for approximating functions*

PROPOSITION 1. The function p]n{z) maximizes the functional

Ψn(p) = 2πXc(p) — \ pdp* among all p e Hn(X), and the deviation from

the maximum is DWn(p — pjjn).

PROPOSITION 2. The function p\n{z) minimizes the functional
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Φn(p) = 2π\c{p) + (_ pdp* - 2Ϊ p\ndp*

among all p e Hn(λ), and the deviation from the minimum is DWn(p — pl).

The proof of each of these propositions is similar to a proof in
[5], For instance, in Proposition 2, one establishes with the usual
application of Green's formula, that

(1) DWn(p - pi) = \ pdpl* - pldp* + (_ pdp* -2[ pldp* ,

where δ is the oriented boundary of a disk with center at ζ. By
applying condition (ii) for the family Hn(X), we find that

I pdpl* - pldp* = 0 ,

and by applying condition (i), we may write Equation 1 as

( 2 ) DWn(p - pi) + 2πXc(pl) = 2π\c(p) + ί pdp* - 2[ pldp* .

Proposition 2 now follows.

4* Extremal properties for arbitrary surfaces • The uniqueness
of the solutions to the operator equation of [4] implies that the
principal functions p}n are \pin (ί = 1, 2). The limit functions pi are
then λ-multiples of principal functions of [4]. Each of these belongs
to the following enlarged class of competing functions.

DEFINITION. The class H(X) is the set of functions p(z) harmonic
on W — {ζ}, whose restriction to Wn, for each n, belongs to Hn(X).
If, for functions p e H(X), we define the limit functional Ψ{p) as the
\\mn Ψn{p), it is only mechanical to check the conditions of the Reduc-
tion Theorem [6] and so establish the following theorem.

THEOREM 1. The function pi(z), and only this function, maxi-

mizes the functional Ψ(p) = 2π\c(p) — I pdp* among all p e H(λ).
j β

The deviation of this functional from its maximum is, for each
such p{z), equal to Dψ{p — pi).

Due to the presence of the last term of the functional Φn(p), the
extremal property for the function p\{z) is not as readily established,
and the following sequence of lemmas is presented for this purpose.

LEMMA 1. For the family of functions {pl(z)}, whose limit is
p\{z), we have the relation lim% DWn(pl — pi) = 0.
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Proof. We have already observed that p}n(z) = \pin(z) for each
n and also that pl{z) = Xp^z). Hence, the quadratic character of the
Dirichlet integral furnishes us with DWn{p{ — pln) = X2DWn(p1 — pln).

Furthermore, due to the univalence of FΛz), it follows that I dpi = 0

for each contour of the set βn. Certainly, then Pί(z)e{p} of [5, No.
5] and according to Lemma 2 of that reference, DWn(pλ — pln) is merely

the deviation 2πc(pL) + \_ pλdpf — 2πc(pln), and this goes to zero with

increasing n. Hence Dw%(pl — p[n) = X2DWn(p1 — pln) goes to zero as

well, and Lemma 1 is proved.

LEMMA 2. If p e H(X), and if for some disk A containing
ζ, Dw__Δ(p) < oo, then limn DWn_A(pλ

ln - pi, p) = 0.

Proof. According to the Cauchy-Schwarz inequality, we have

(DWnUpL - Pi P)Y ^ DWn_Mn - PΪ)Dwn-Av),

and Lemma 2 now follows directly from Lemma 1.

LEMMA 3. // D^_Δ(p) < oo, then \\mn DWn_j(pλ

ln, p) exists for each
peH(X), and is equal to Dψ_j(pλ

u p).

Proof. By the linearity of the mixed Dirichlet integral, we know
that DWn~j(pL, P) - DWn_Δ{pi p) = DWn_Δ{p{n - p{, p). Hence our result
will follow from Lemma 2 if lim* DWk_Δ{p{, p) exists. Upon using the
Cauchy-Schwarz inequality again, we find

(DWq_Wk{pί p)Y ^ DWq_Wk(pl)DWq_Wk(p) .

Since each of these can be made small, it follows that the sequence

{Dw%-Δ{p\, p)} converges.
For later use, we now draw the following corollary.

COROLLARY. If Dw_Δ(p) < co, then

lim DWn(p - PL) = Dw(p - p^ .
n

Proof. Certainly it suffices to prove our relation with Wn and
W replaced respectively by Wn — A and W — A. Due to the linearity
of the Dirichlet integral, we have

( 3 ) DWn_Δ(P ~ PL) = DWn_Δ(p) - 2DWnUP, Pl«) + DWn~λpL) .

In the limit, the first term becomes Dψ_Δ(p), and according to Lemma
3, the second term approaches — 2>Dψ_Δ{p, pi). As for the third term,
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we need only observe that

%UPL - PΪ) ̂

Hence it follows from Lemma 1 that the third term on the right in
Equation 3 approaches D^-j(pί), and the corollary is proved.

For each p(z) with Dψ_Δ{p) < oo, we have now established, accord-
ing to Lemma 3, a functional Φ(p). For the existence of

lim DWn_d(pin,p)
n

determines, and is determined by the existence of lim% \ p\ndp*.

DEFINITION. For each peH(X),Φ(p) is understood as lim% Φn(p),
where Φn{p) is defined in Proposition 2.

Certainly such is defined if Dj?__j(p) is finite. If, on the other
hand, Dψ^(p) is infinite, then so is limw Dw%(p — p\n). It then follows
from Equation 2 that Φ{p) is infinite as well.

We are now able to state Theorem 2, which seems to extend the
results of [5] and [2] in that it applies to a wider class of harmonic
functions. The same will be true for corresponding theorems concern-
ing λ-th principal analytic functions which are rather naturally
associated with our principal harmonic functions.

THEOREM 2. The function pi(z), and only this function, mini-

mizes the functional Φ(p) = 2πXc(p) + 1 pdp* — 21 p{dp* among all

p e H(X). The minimum value Φ(pl) is lim% Φn(pλ

ln), and the deviation
of this functional from this value is Dψ(p — pi).

Proof. Since each p(z) of H(X) is, when properly restricted,
automatically in Hn(λ), it follows from Proposition 2 that

(4 ) Φn{p) - ΦMn) - DWn(p - pi) .

Hence it follows from Lemma 1 that Φ{p?

ι) = limw Φn{p\n). Furthermore,
it follows from Proposition 2 that Φn{p]n) S Φn(p) for each peH(X),
and with the equality just established we have Φ(p{) ̂  Φ(p). Hence
p{(z) minimizes Φ(p) among all p e H(X).

If Dw_j(p) is infinite, then so are DJΓ(P — pi) and

Φ(p) = lim Φn(p) = lim DwJp - pi) + 2πXc(pί) .
n n

The deviation formula is understood in the sense that Φ(p) — Φ(pl)
and Dψ(p — p{) are both infinite. Suppose now that Dψ_Δ{p) is finite.
The deviation formula will follow, according to the corollary to
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Lemma 3, from taking limits in Equation 4.
The Theorems 1 and 2 are valid for bordered Riemann surfaces

V having two isolated border components 7 and δ in the sense of [2],
On such surfaces, the appropriate class H(X) of harmonic functions
p(z) consists of those functions satisfying (i) p(z) — const. = cr(p) for
each zey with flux on 7 equal to 2τrλ, (ii) p(z) = const. = c5(p) with
flux on δ equal to — 2ττλ, and (iii) p(ζ) = 0 for some ζ, an interior
point of V. The harmonic p\(z) belongs to H(X) and is a limit of
functions {pίΛ(s)}, each with zero flux on βt and constant there; while
pl(z) is a limit of {p\n(z)}, each with normal derivative equal to zero
on βn. Theorems 1 and 2 are now valid verbatim, if only we interpret
c(p) as cr(p) - c8(p).

5* Extremal properties of weakly λ-valent principal functions*
We consider the λ-th principal functions Fi(z) = exp(pλ

0(z) + ipo(z)*)
and F}(z) = exp (p{(z) + ip{(z)*) already introduced in [3]. A class of
analytic functions on W naturally associated with the harmonic class
H(X) would seem to be the following.

DEFINITION. The class A(X) is the set of functions F(z) analytic
on W satisfying (i) for zey, \ F(z) | = const. = r(F) and

d(arg F(z)) = 2πλ ,
r

(ii) F(z) has a λ-th order zero at z = ζ, where limβ_^ F(z)/(z — ζ)λ = 1.
Each of the λ-th principal functions of [3] belongs to the class

A(X), and furthermore, for each function F(z) of the class A(X), the
harmonic log | F(z) | belongs to the class H(X) of No. 4. These remarks,
along with Theorems 1 and 2, establish the following two theorems.

THEOREM 3. The X-th principal function F}(z), and only this
function maximizes the functional

2πX log r(F) - ί log | F(z) \ d(arg F(z))

among all functions of class A(X). The deviation, for each F(z) e A(X),
from the maximum is Dψ(log | F(z)/Fi(z) |).

THEOREM 4. The X-th principal function F}(z), and only this
function minimizes the functional

2πX log r(F) + \ log | F(z) \ rf(arg F{z)) - 2\ log | F}(z) \ d(arg F(z))
jβ jβ

among all functions of class A(X). The deviation, for each F(z) e A(X),



EXTREMAL PROPERTIES CHARACTERIZING WEAKLY 115

from the minimum is DπQog \ F(z)/F}(z) |).

It is not difficult to establish that the class A(X) is properly-
larger than the class of λ-th powers of univalent functions. For one
need only consider the harmonic p(z) = p{(z) + tβ,(z) — tβ,,(z). Here,
βf and β" are components of the ideal boundary β, tβ,(z) and tβ,,(z)
are the respective capacity functions for these boundary components.
That is, the class {t} [7, p. 141] is taken as those functions for which
I dί* = 2π and I dt* = 0 for each cycle σ not separating the point
ζ from β'. Then tβ,(z) is that harmonic function which minimizes

I tdt* in this class. The function tβ,,{z) is defined in an analogous
J β

manner. The analytic F(z) = exp (p(z) + ip(z)*) belongs to the class
A(λ) and is according to the appendix of [3], a λ-th power of no
univalent function.
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