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The purpese of this paper is to prove that if (X, m\,, 4)
is an inverse system of compact Hausdorff spaces such that
each X, has the fixed point property for the continuous multi-
valued functions and each projection map is surjective, then
the inverse limit space also has the fixed point property for
the continuous multi-valued functions,

A topological space X is said to have the f.p.p. (fixed point
property) if for every continuous (single-valued) function f: X — X
there exists some « in X such that ¥ = f(x). Hamilton [3] has proved
that the chainable metric continua have the f.p.p. A topological space
X is said to have the F.p.p. (fixed point property for multi-valued
functions) if every continuous (see Definition 1) multi-valued function
F: X— X has a fixed point; that is, there exists some point z in X
such that v e F(z). If a space has the F.p.p. then it has the f.p.p,,
but the converse need not be true [12]. Mardesi¢ [8] has exhibited
an inverse sequence, (X,, T,..), of polyhedra, X,, such that all X,
have the f.p.p. and all bonding maps «,,, are surjective, but the inverse
limit space, lim (X,,, 7,..), fails to have the f.p.p. This answered an

open questign— raised by Mioduszewski and Rochowski [9 and 10], in
the negative. Thus, our result stated in the first paragraph serves
as an interesting counter-theorem to the result of Mardesié |op. cit.].
As a corollary, we obtain Ward’s generalization [13] of the Hamilton
theorem [op. cit.] that every metric chainable continuum has the F.p.p.
In effect, our result is stronger than that of ward, since it includes
some of the nonmetrizable chainable continua as well.

1. Preliminaries. In all that follows, all spaces are assumed
to be Hausdorff spaces. A multifunction, F: X — Y, from a space X
to a space Y is a point-to-set correspondence such that, for each z ¢ X,
F(z) is a subset of Y. For any ye Y, we write F~'(y) for the set
{xeX|yeF(x)}. If Ac Xand BC Y, then F(A) = U {F(x)|x e A} and
F-(B) = U{Fy)|ye B}

DEFINITION 1. A multifunction, F: X — Y, is said to be continuous
if and only if (i) F(x) is closed for each z in X, (ii) F~'(B) is closed
for each closed set B in Y, and (iii) F~(V) is open for each open set
Vin Y.

Our definition of continuity here is weaker than that of Berge [1,
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p. 109], but these two definitions coincide when the range space Y is
compact.

A proof of the following lemma may be found in Berge [1, Th. 3,
p. 110].

LemmA 1. If f: X— Y is a continuous multifunction and if A
18 a compact subset of X such that F(a) is compact jfor each ac A,
then F(A) is compact.

DEFINITION 2. The triple, (X, T, 4), is an inverse system of
spaces if and only if:

(i) 4 is a directed set directed by <,

(ii) for each ne 4, X, is a (Hausdorff) space,

(iii) if v > p, m,, is a continuous function of X, to X,

(iv) if x> g and g >y, then 7, = 7,,7;..

Each function 7;, is called a bonding map. If )\ is in 4, let S;
be the subset of the Cartesian product P{X;|\ € 4} defined by

S; = {x|if » > g then 7;.2(\) = x()},
where x(\) denotes the \-th coordinate of x.

DEFINITION 3. The itnverse limit space, X.., of the inverse system
of spaces (X, 7,,, 4) is defined to be

N {S; | xe 4}

endowed with the relative topology inherited from the product topology
for P{X,|»xe4}. In notation, we shall write X.. and lim (X, 7;,, 4)

interchangeably for the inverse limit space defined abovée.—

We write p;: P{X; |\ € 4} — X for the A-th projection of P{X,|\ € 4},
i.e., py(x) = o(\) for all x in P{X, |\ € 4}; the restriction p,| X.. will
be denoted by w, which will be called a projection map. It is readily
seen from the definition that an element x of P{X,;|\e 4} is in X. if
and only if 7,.0,(x) = p.(x) whenever A > £«. A more detailed account
of inverse limit spaces may be found in Lefschetz [6], Capel [2] and
Mardesié [7].

The following known results (see, e.g., [2], [6]) will be used.

LEMMA 2. (i) The collectron {m;"(U;) | ne 4 and U, is an open
subset of X} forms a basis for the topology of X..

(ii) The itnverse limit space, X., is Hausdorff; if ned, S; is
a closed subset of P{X,|\¢€ A} so that X.. is closed in P{X, |\ € 4}.

(iii) If X; 1s compact for each N in A, then X, is compact; if,
wn addition, each X, is nonvoid, then X. is monvoid.

(iv) If X, is a continuum for each e, then the inverse limit
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space s a continuum.

LEmMMA 3. If A is a compact subset of X.. and if w), = 7, | T(A),
then (m;(A), 75, A) is an inverse system of spaces such that A =
lim (7,(A), 7., A), and each bonding map 7). is surjective.

-—

2. Main results. In the sequel, since we are only interested in
compact spaces, each projection map «, will be assumed to be surjective;
for if otherwise, by virtue of Lemma 3, each X, may be replaced by
7,(X.) without disturbing the resulting inverse limit space. We are
now ready to state our main result.

MAIN THEOREM. Let (X, 7, A) be an inverse system of compact
spaces such that each X, has the F.p.p., then the inverse limit space
X.. also has the F.p.p.

We divide the proof of this theorem into the following steps. In
Lemmas 4, 5 and 6, X.. will be the inverse limit space of the inverse
system (X, m,,, 4) of compact spaces.

LemMmA 4. If F: X. — X.. is a continuous multifunction, define
Fr:X,— X, by F, =m,Fz;* for each \, then F, is a continuous
multifunction.

Proof. (i) By Lemma 1, F(z~'(t)) is compact in X, for each ¢
in X,, and consequently each F(t) is closed in X,.

(ii) If C, is a closed subset of X,, then F;'(C,) is closed. For,
the set F~'n7'(C;) is closed in X. and hence compact; therefore
., F~'r7(C,) = Fi7Y(C,) is compact and hence closed.

(iii) Since each 7, is also an open map, as a dual of (ii) above,
Fi7(U,) is open for each open set U, in X,.

Thus, by (i), (ii) and (iii) above, F;: X; — X, is continous.

LEmMMA 5. F: X.— X. be a continuous multifunction, let
F: X, — X, be defined as in Lemma 4. Then, for each x in X.,
(1) (Fiuwy(x), 7y A and (7,F (x), T, A) are inverse systems of
compact spaces,
(i) lim (Fym(x), 5, A) = lim (7,F(x), T, 4),
(i) Fla) = lim (Fim,(), T, ).
——

Proof. (i) It is obvious that each F,x,(x) is compact. To show
that (F,z;(%), 7., 4) forms an inverse system, it suffices to show
7. Fmy(w) © F,w.(x) whenever \ > zt. To this end we first observe

A), then (z,(A), 7, A)

! For simplicity in symbolism, henceforth if A clim (X, = w0
—

Py
will mean (z,(4), Ton [ m,(4), 4).
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7T(®) € (TRT)THX) = TLT(x) ,
since 7;,.7; = m,. From this, with some computations,
T Fm(e) C Furu(x)

follows.

The fact that (7,F(v), 7., 4) forms an inverse system follows from
Lemma 3.

(ii) For each ne 4 and any x ¢ X.., we have

T, F (x) C T, Fa7'w(x) = (mFa)ms(x) = Fims(x) ,
and thus,
lim (z,F(x), 7;,., A) C lim (F;7(2), T, 4) .
— —
To prove the other inclusion, we show
X.. — lim (7, F(x), w5, A) C X, — lim (Fi7w (%), T,,, 4) .

Let y be in X.. — lim (7,F(x), W;,, 4), then by Lemma 3 there exists a

red such that 71'#((;)— ¢mw. F(x). Let U, and V, be two disjoint open
sets in X, such that

7.y)e U, and 7, F(x)C V,
so that
Fyca;\(V,).

If follows then from Lemma 2(i) and the continuity of F' that there
exists a ¢ 4 and an open set U, in X; such that x e n;7Y(U;), and

(*) F(z(Us) c (V) .

Since 4 is directed, there is a \,c 4 such that N, > ¢ and N, > d, we
shall use this 1, throughout the proof of lemma. If we denote U, =
7;,5(Us) and using the equality 7;* = 7y'n;;, then (*) may be rewritten as

F (s (Us) cwz(V)
and hence
F(U;) = m ' (Us) C 7w (Vi) = 70 (5,70 (V) = md(Vy) .
In particular,
Fy (@) C (V) .

Similarly, one obtains 7, (y) € 73 (U.,).
Since 77.(V.) and 73 (U,) are disjoint, 7, (y) € F;m; (). From this we
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conclude y ¢ lim (F,7 (), 7., 4), as desired.
(ili) This follows immediately from (ii) above and Lemma 3.

LemMMaA 6. Let F: X, — X.. be a continuous multifunction, let
F:X,— X, be defined as in Lemma 4. Let E, = {e,| ;€ X, and
e, € Fi(e)} then (E;, wy,, A) forms an inverse system.

Proof. It suffices to prove x,.(E,) C E, whenever » > y, which
follows in a routine way.

Proof of main theorem. Since each X, has the F.p.p. and, by
Lemma 4, each F;: X, — X, is continuous, each E, is closed and nonvoid.
By Lemma 6, (&, 7., 4) is an inverse system of compact spaces, so

it has a nonvoid inverse limit space lim (F,, 7;., 4). We now conclude
AN

the proof by showing that each » in lim (E,, 7, 4) is a fixed point
o

under F} i.e., € F(z). If z is in lim (&, 7., A), then m,(x)e K, for

all e 4; i.e., m(x) e F,z,(x) for all x(——e—/l. Consequently, by Lemmas 3
and 5, we have

¢ = lim (z,(x), T, 4) € lim (F7(2), Ty, 4) = F(3)

Since the main theorem fails for single-valued functions, it should
be pointed out that why the above argument breaks down in the single-
valued case: given any continuous multifunction F: X. -— X.., each
induced F, is again a continuous multifunction and hence has a fixed
point; this is crucial to the proof. In the single-valued case, however,
it does not follow in general that F', is single-valued and hence F),
may not have a fixed point.

In fact, with the assumption of the main theorem and the notation
of Lemma 6 together with the notation £ = {x | x € F(z)}, we can make
the following sharper assertion.

THEOREM. F = lim (£, 7., 4).
—

Proof. From the proof of the main Theorem, we have E D lim (&,
-
T A). It remains to be proved that

Eclim (Ez, Tiuy A) .
Let « be in E, then 2 ¢ F(x) and therefore, for all \ ¢ 4,
7(@) € F(w) C m F(n7'm;)(x) = Fy(m(w)) .

That is, 7,(x) € £, for all A; consequently, by Lemma 8, E C lim (E,, 7;,, 4).
A chain (U, U,, ---, U,) is a finite sequence of sets U, such that
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U nU;#] if and only if |7 — j| <1, where [ ] denotes the empty
set. A Hausdorff space X is said to be chainable if to each open
cover 27 of X there is a finite open cover ¥ = (U, U,, ---, U,) such
that (i) % refines &°; (i) % = (U, U,, +--, U,) forms a chain. It
follows that a chainable space is a continuum. It is implicit in the
paper of Isbell [5] that each metrizable chainable continuum is the
inverse limit space of a sequence of (real) arcs. This together with a
theorem of Strother [12] that a bounded closed interval of the real
numbers has the F.p.p. implies the following result of Ward [13] as a
consequence of our main theorem.

Corollary [13]. FEach chainable metric continuum has the F.p.p.

Examples of inverse limit spaces of inverse systems of real arcs
exist which are not metrizable; for instance, the long line [4, p. 55]
is one such.

We are indebted to the paper of Professor Rosen [11], and to
Professor A. D. Wallace for his kind encouragement.
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