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In this paper an exact solution is found for the dual
series equations
(1) 3\ Cul(a+ B+ n)Lya; x) = f(x), 0=sz<d,
n=0

(2) S Culla+1+mnLa;o)=gx), d<<oo,
=0

where a+ 8> 0,0 < 8<1, Lya; x) = Li(x) is the Laguerre
polynomial and f(x) and ¢g(x) are known functions,

In a recent paper Srivastava [3] has solved the equations

(3) S{AI@ + 1+ m)} L@ o) = f@),  0=w<d,

(4) S{A@+ 12+ mil@;e) = g@), d<o<e,a>-12,

by considering separately the equations when (a) g{x) = 0, (b) f(x) = 0,
and reducing the problem in each case to that of solving an Abel
integral equation. Srivastava’s equations are a special case of (1)
and (2) with 8=1/2 and A, = IN'a + 1+ n)(ax + 1/2 + n)C,.

The solution presented in this paper employs a multiplying factor
technique which is more direct than the method given in [3] and is
similar to that used by Noble [2] to solve some dual series equations
involving Jacobi polynomials.

2. In the course of the analysis we shall use the following

results.
From [1, p. 293(5), p. 405(20)] it is readily shown that

T AR .
(5) Sox(y o7 Lofet; e = GELEI ST et Lt 5 0),

where —1 < a, 8 >0, and
(6) |"@—wye Lia;o)de = 1A ~ 9 L + £~ 151,

where 1 > B, a + 8 > 0.
The orthogonality relation for the Laguerre polynomials is

(7) S: x*e? L,(a; 2)L,(«; x)de = W Opmy X > —1
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where 6,,, is the Kronecker delta.

3. Solution of the problem. Multiplying equation (1) by
x*(y — x)°7!, equation (2) by (x — y)~? ¢ * and integrating with respect
to « over (0, y) and (y, <) respectively we find on using the results
(5) and (6)

< L+ 1+ n) R
(8) %Cnan(a‘i‘Byy)—l,(B) Sox(y x)’ 7 f(x)dw

where 0 <y < d,a > —1,8> 0, and

icnr(a+1+n)Ln(a+5—1;y)

(9)

- ?(Tey_?) r @ — y) e g(x)ds |

ford <y <eo,1>8a+ 8>0.
If we now multiply equation (8) by y<*¢, differentiate with
respect to ¥ and use the formula

(10) —jx— @ Ly(a; @)} = (0 + )z Lya —1;2)

we find

8

C.l'a+1+n)L(x+ B —-1;y)

n

(11) . yl—cx—lé’ d

Yy
— | a*(y—a) fla)x ,
G
where 0 <y <d,B8>0,a > — 1.

The left hand sides of equations (9) and (11) are now identical
and using the orthogonality relation (7) we see that the solution of
equations (1) and (2) for ¢ + 8> 0,0 < 8 < 1, is given by

— I'(n +1)
12 C, = (@ 8:d),
" F(“+1+%)F(a+3+n)3(aﬂd)
where
P T G L
Bl 554 = g Soe Li(e + 8 — 1;9)Fy)dy

(13) 1 “ a+3—1 L p 1

+r—(1fﬁ8¢y L@+ 8- 196wy
and

(19) Fly) = Fd— Sw(y — 2 f@)de
y 0
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(15) 6w = | @ — 9 e g@rda

To obtain the solution of Srivastava’s equations (3) and (4) we
write 8=1/2, A, =Ta + 1+ n)(a¢ + 1/2+ n)C, in (12) and find
that

_I'(n+1)
(/2

|y L - 125 )Gy}

{I;e Lt = 1725 )Py
(15)

for a >—1/2, and where F(y) and G,(y) are given by equations (14)
and (15) respectively with 8 = 1/2.

Comparing the above solution with that obtained in [3] it can
be seen that they are in agreement except for the form of the
function G,(¥). The limits on the integrals of equations (4.7) and
(4.8) in Srivastava’s paper are wrong and should read (x, «) and
(%, o) respectively. When these corrections have been made we find
that his term corresponding to G.,(y) can be written in the notation
of the present paper as

d - —1/2 . —a
(17) —_S (@ — v) de e g(u)du .
dy Y z

After inverting the order of integration, earrying out the integra-
tion in 2 and performing the differentiation with respect to w it is
found that (17) is equal to G.(y). Hence with this simplification
Srivastava’s solution reduces to that given by equation (16).

4. It is also possible without computing the coefficients C, to
find the values of series (1) and (2) in the regions where their values
are not specified, We define (1) to have the value h(z), d < & < oo,
and (2) to have the value k(z), 0 < x < d.

(a) Caleulation of h(x). Substituting for C, from equation (12)
into (1) and interchanging the order of integration and summation
we find

@) = | e F@)S @, iy

(18) L

vt \Tyme)Sie, wdy,  d<w< oo,
SR ¥)S.(x, y)dy

d

where

, s __ I'(n+1) . —1-
a9 S, y) =% Faritm L,(a; )L, @+ B —-1;5y).




126 JOHN S. LOWNDES
Using the results (6) and (7) it is easily shown that

_ea (@ —y)~f _
(20) Su@, y) = 1 —5) H» —y),

where H(z) is the Heaviside unit function.
From equations (18) and (20) we see that Xi(x) is given by

(21) I = §)ehie) = — | o — 0 Py
1 "oyt — 4)=E
bl SV 0 6wy,
for d < x < o, where F(y) and G(y) are given by equations (14) and
(15).

(b) Calculation of k(x). Using the differentiation formula
(22) e Li(@; o) = =~ L@ ~1; )},
x

we may write equation (2) as

%x_ e 3,C, @ + 1+ mL(a —1; )
(23) =
= — ¢ k() , 0=x<d.

Substituting for C, and interchanging the order of integration
and summation we find

" e hfa) = — —Lef r<13> [ e F)s.@, vy
1 “ a+3—1 "
e |V WS vy

for 0 < 2 < d, and

o~ I'(n +1) R 1.
o5 Sy, y) —% Fa+Bin L, —-1;2)L,(a+ 8 —1;y)

— 1 x — B—1 pl—a—3 o

= To ey — x) 'y H(y — ),

where the series has been summed using the results (6) and (7).
Substituting for S,(z, ) in (24) we see that k(z) is given by

@) I k@ =~ | e = oy Fapay

1 © R
+—msd (y — x)? G(y)dy} )
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when 0 < z < d.
It is perhaps interesting to note that the expressions for the
functions k(x) and h(x) do not involve Laguerre polynomials.
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