Pacific Journal of

Mathematics

SUM AND PRODUCT OF COMMUTING SPECTRAL
OPERATORS

KIRTI K. OBERAI




PACIFIC JOURNAL OF MATHEMATICS
Vol. 25, No. 1, 1968

SUM AND PRODUCT OF COMMUTING
SPECTRAL OPERATORS

Kir11 K. OBERAI

Let E be a separated, quasi-complete and barreled locally
convex space. Let 7 and T, be two commuting, continuous
spectral operators on E. The conditions under which 7T; + T.
and T.T. are spectral operators are obtained. Further, let X
be a locally compact and s-compact space. Let « be a positive
Radon measure on X. Let 27(X, #)(1 < p < =) be the linear
space of all complex valued functions defined on X, whose p**
powers are locally integrable with respect to the measure u.
This space is given a certain topology under which it becomes
a complete metrisable locally convex space. The sum and
product of two commuting scalar operators on 27(X, x)(2 < p
< oo) are scalar operators and the sum and the product of two
commuting spectral operators are spectral operators provided
that the spectrum of each operator is compact,

In this paper we prove that under certain conditions the sum and
the product of two commuting spectral operators on a locally convex
space are again spectral operators. We also obtain expressions for the
spectral measures of such sum and product. The technique used is,
in principle, similar to one employed by Pedersen [9]. Also, if X is
a locally compact and o-compact space and g is a positive Radon
measure on X, we consider the space Q27(X, ¢#)(1 £ p < ) which
consists of the complex valued functions, f, defined on X such that
for each compact set K in X, f{({x is the characteristic function of
K) belongs to L?(K, p). This is a linear space and on this space, we
define a locally convex topology by a family {p.: K compact in X} of
semi-norms given by

pels) = ({1 £1720)" .

K

Dieudonné [1] obtained some of the properties of £'. By using his
methods, we prove that the space 27°(= (X, )1 < p < =) is a
complete metrisable space and is also weakly sequentially complete.
We also obtain the dual of Q°. By using some inequalities obtained
by MecCarthy [7], we show that the sum and the product of two
commuting scalar operators on 27(2 < p < <o) are again scalar opeta-
tors and the sum and the product of two commuting spectral operators
are spectral operators provided that the spectrum of each operator is
compact.
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In the original version of this paper Theorem 2.5 (and hence also
Theorem 3.1) was proved under the additional assumption that E is
bornological. The author wishes to thank the referee for pointing out
that the results, in fact, are valid without this additional assumption.

1. Preliminaries. In this section we give some basic definitions
and collect some known results. Most of these results are taken from
[4] and [5].

Throughout this work C will denote the field of complex numbers
and C the one point compactification of C. By <# we denote the class
of Borel subsets of C and by E a complex locally convex space which
we shall always assume to be quasi-complete and barreled. By E’ we
denote the dual of E and by .<2(F) the space of all continuous linear
maps of E into itself. By I we denote the identity map of E onto
itself. We shall always assume that .&°(F) is provided with the
topology 7, of uniform convergence on the bounded subsets of E.

We give the following definition due to Waelbroeck [10].

DEFINITION 1.1. A e C is said to belong to the resolved set o(T)
of Te <2(E) if and only if there is a neighborhood V; of N in C
such that there is a function g— R, on V, N C to &~ (F) satisfying,
for each pe V; N C the conditions

(i) RJpI—T)= (eI —T)R,=1I;

(ii) {R.: peV,N C} is bounded in £ (K).

The spectrum, sp(T), of T is defined by sp(T) = C ~ o(T). If
oo ¢ sp(T) then T is called a regular element of < (F). The set of
all regular elements of (%) is denoted by <~ (E).

DEFINITION 1.2. A function {P(0): 0 € <&} of commuting projec-
tion valued operators defined on <% with values in <~ (F) is called a
spectral measure on K if

(a) for each xe K, P(-)x is countably additive in FE;

(b) P(C)=1I;

(¢) {P(0): 0€ <7} is an equicontinuous part of ().

Under the assumption that E is barreled, condition (¢) may be deduced
from condition (a).

It follows from (a) that for each v ¢ E and a' € E’, {P(-)x, 2"y is

a (countably additive) complex-valued measure.

LeEMMA 1.3. (@) P(¢) = 0; (¢ ts the null set)
(b) P(ono)= P(o)P(9),0,0eZ.

Proof. This is proved in [8, Lemma 2.15].
An operator T € ¢~ (F) is said to commute with a spectral measure
P(-) if P(o)T = TP(o) for all 0e .
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DEFINITION 1.4. An operator T e <2(K) is called a spectral ope-
rator if there exists a spectral measure P(-) on E such that

(a) T commutes with P(-);

(b) sp(T|P(o)E)Cd,0¢€.7;

(¢) for each xc E and «’ ¢ E’, the complex measure {P(-)x, x">
has compact support.

Here 7T'|P(o)E denotes the restriction of 7 to the subspace
P(o)E of E.

Such a spectral measure is unique, if it exists. Also, if Ae £ (F)
commutes with T then A commutes with the spectral measure corres-
ponding to T.

Since we shall be interested only in spectral measures correspond-
ing to spectral operators we may and shall assume that whenever P(-)
is a spectral measure on E, for each e E and 2’ € E' {P(-)z, 2"> has
compact support.

DEFINITION 1.5. An operator Se &~(FE) is called a scalar operator
if there exists a spectral measure P(-) on E such that A is integrable
with respect to <P(-)x, «’> for each v € K and '€ £’ and such that

{(Sz, " = Shd(P(m)x, >, xeB, 2 ek .
c

Every scalar operator is a spectral operator and the spectral
measure corresponding to a scalar operator is unique.

An operator N e _o~(F) is called quasi-nilpotent if for each xe¢ K
and 2’ e E’

lim [{N"x, 2" ['" = 0.

If E is quasi-complete and barreled then Ne ¢~ () is quasi-
nilpotent if and only if sp (V) = {0}.

A spectral measure P(.) on E is said to satisfy condition PC, if
for each ¢ E and x' e E’ there exists a compact set a(«, 2’) such that
Supp <P(.)Qx, x> C o(x, &’) for each operator Q € & (£) and commut-
ing with P(.).

We take the following theorem from [5]:

THEOREM 1.6. Let E be quasi-complete and barreled. Let
T e #(F) be a spectral operator whose corresponding spectral measure
satisfies the condition PC,. Then T can be uniquely expressed as
T =S8+ N where S is a scalar operator having the same spectral
measure as T and commuting with T, and N 1s a quasi-nilpotent
operator commuting with S.

Conversely, if Se L (E) is a scalar operator and N e A (FE) is
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any quasi-nilpotent operator commuting with S then T = S + N 4s
a spectral operator having the same spectral measure as S.

The above decomposition of a spectral orerator is called the canon-
ical decomposition. S is called the scalar part of T and N the
radical part of T. In the sequel, whenever we consider the canonical
decomposition of a spectral operator it will be tacitly assumed that
the corresponding spectral family satisfies the condition PC,. It may
be remarked that if sp(T) is compact then Uer Supp {P()z, 2" is

z'€E
compact and P(.) automatically satisfies the condition PC,.
We give the following generalization of Orlicz-Pettis theorem
which is proved in [5, Lemma 1.1.1].

LeMmaA 1.7. A set function m defined on <% with values in K
is countably additive in E 1if and only if it is weakly countably
additive.

We now prove a few lemmas which will be of use in the follow-
ing sections.

LeEmMA 1.8. Let P(.) be any spectral measure on E. Then for
each bounded set BC E and each equicontinuous part A E’ there
exists a constant K such that |{P(o)z,2'>| < K for all xeB,2'c A
and for all o 7.

Proof. Since {P(0): 0 € <#} is an equicontinuous part of <~(K)
and B is bounded in E, {P(0)x: 0 € <%, x € B} is bounded in E. Since
A is equicontinuous in E’ it follows that {{P(o)x,2">:0¢€ #,x¢c B,
2’ e A} is bounded in C. This establishes the lemma,

LEMMA 1.9. Let E be barreled and let I be any equicontinuous
part of <~A(H). Let A be any equicontinuous part of E'. Then the
set {T'x':x' € A, Tel} is an equicontinuous part of E'. (Here T' is
the adjoint of T e <~ (K).)

Proof. Since E is barreled, it is enough to prove that for x e E,
{ e, T'a">: ' € A, TeI'} is bounded in C. Since I" is equicontinuous
in &#(K),{Tx: T e I'} is bounded in ¥ and hence {{Tx, 2> Terl, s’ € A}
is bounded in C. This proves the lemma.

LeEmmA 1.10. Let P(.) be a spectral measure on a barreled space
E. Then 3.11;P(5;) 1s an equicontinuous part of F(KE) if j varies
over any ﬁnite wndex set and | p;| <1 for all j. (0; are mutually
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disjoint sets in <Z.)

Proof. Since FE is barreled, it is enough to prove that for each
xe FE and each equicontinuous part AcC E’ sup|<2/z]P (0,)x, x| is
bounded in C. Now

(S PG, o |5 sup | ] 5 1<PG, )
< sup|g; | 4K
< 4K,

where K = supse» |{P(d)x,2’>| < . Since K is independent of '
€A
and depends only on 2 and A4, the lemma is proved.

LemMA 111, Let xc¢ E and z' c &' be fized. Let P(.) be a
spectral measure on K and let o be the compact support of {P(.)x, x">.
Then for any finite disjoint subdivision (¢,)Y., of o into Borel sub-
sets of C, such that diam (o;) <e,7=1,2, .-+, N,

]S)»d(P()m)x, x> — i%KP(ai)x, 2> = 8cK
where K = sup |[{P(0)x, &> | and \; € 0,.

The lemma can be easily established by following the steps in the
proof of [2, Th. 7].

2. The product measure of two spectral measures. In this
section we shall define the product measure of two commuting spectral
measures.

Let A denote the algebra generated by the sets of the form ¢ x o
where 0 ¢ <7 and 6 e <. Let 4* be the o-algebra generated by 4.
Bach ae 4 may be expressed as

(*) “:L:Jl(o'ixai)
where 0, <% and 6, ¢ #(1 =1,2,---,n) and

(0; X 0)N(0; X 0;) =¢,T# ] .

For two commuting spectral measures P(.) and Q(.) on E, we
define a set function R, with values in <~(F) by

R(a) = 3P(@)Q0) ;

where ac 4 is represented in the form (*). We remark that this
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definition is independent of the representation of «.
By making use of representation (*) we can easily prove the
following lemma.

LEMMma 2.1. For aed and Be 4,

(a) RyanB) = R(x)R(B);

(b) R(a U B) = Ro(a) + Ro(ﬁ))y @f anpB = ?;
(¢) R(CxC)=1I.

COROLLARY 2.2. Ry(.) is a finitely additive set function on 4 to
F(H). The set {Rya): ae 4} consists of commuting projections.

REMARK. For given xc F and &' ¢ E’, sincedP (.)z, 2'))> and {Q(.)
x, ’> have compact support, it follows that (R (.)x, > has a compact
support in C x C.

Let X be a topological space and let 4 be an algebra of sets in
X. Let S(.) be a set function defined on 4 with values in <~ (F).
We shall say that S(.) is regular on A if for each x ¢ K, for each
equicontinuous part Ac E’, for each ¢4 and for each ¢ > 0 there
exist a closed set ZC o and an open set U ¢ such thatif 6c U~ Z
and 6 € 4 then

sup [{S (), 2> | <e.

ProrogiTiON 2.3. If P(.) is a spectral measure on E, then P(.) is
regular on 7.

Proof. Let xc E and A an equicontinuous part in E’ be fixed.
We first show that the set S = {{P(.)z, 2"): &’ € A} of complex measures
is weakly sequentially compact as a subset of ca (C, &), the space of
all bounded complex measures on <%, By Lemma 1.8 there exists a
constant K such that [{(P(o)z, 2'>| < K for all 2’ ¢ A and for all 0 € #
so that S is uniformly bounded. Let (5,) be a decreasing sequence
of sets in <% such that o, | ¢. Let A° be the polar of A (with respect
to the duality <{E, E’)) so that A° is a 0-neighborhood in E. Let p
be the gauge function of A° (and hence a continuous seminorm on E).
Since P(.)x is countably additive in F, lim,..P(s,)z =0 in E.
Therefore, for given ¢ > 0, there exists a positive integer N such that
p(P(0,)x) < ¢ for all n = N. This in turn implies that {P(c,)x, 2> — 0
uniformly on A. Hence S is weakly sequentially compact [3, Th. IV,
9.1]. By [3, Th.IV,9.2], there exists a positive (regular) measure
reea (C, &#) such that lim,,,,{P(o)x, "> = 0 uniformly on A.
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Let ¢ > 0 be given. There exists a 6 > 0 such that if ye <Z and
M7) < 0 then |[{P(v)x,2'>| <¢/2 for all '’ e A. Since ) is regular,
for a given o € <& there exists a closed set Zc o and an open set
U Do such that AM(B8) < 6 whenever BC U ~ Z and B e «&. This shows
that | (P(B)x, v">| < ¢/2 for all 2’ € A so that sup,.e, |<P(B)x, ' D <e.
This proves the regularity of P(.) on <#.

ProposITION 2.4. Let P(.) and Q(.) be two commuting spectral
measures on E such that the Boolean algebra generated by P(.) and
Q(.) is an equicontinuous part of &°(F). Then Ry (.) is regular and
countably additive on 4.

Proof. By virtue of representation (*) it is sufficient to prove
the result for a set ¢ x d € 4 where 0,0 ¢ Z.

Let x € EF and A an equicontinuous part of E’ be fixed. Let Z, C
ocCU, and Z,C 6 CcU, where Z, and Z, are closed sets and U, and U,
open sets in C to be specified afterwards. Let a be any set in 4
such that ac (U, x U,) ~(Z, X Z,). We have, (Lemma 2.1 and
Corollary 2.2,)

sup [ <By(@)w, o[ = sup [<R((U, X Uy) ~ (Zi X Z))R(@)w, @)
= sup [<R((U, ~ Z) x U; U Z x (Uz ~ Za))z, Bi(@)' @'y |
= sup [<E((U, ~ Z)) x Uz, B(@)'v")|

+ sup [{B(Z, x (U. ~ Z))e, R@)a’)|

sup [{QU)P(U; ~ Z)z, RBa)a’) |

+ sup [{P(Z)QU. ~ Z)w, R’y | .

Now, by hypothesis {R,(«): « € 4} is an equicontinuous part of < (K).
Hence, by Lemma 1.9, {R(a)«’: ' € A} and hence {Q(U,) R (a)x’: o' € A}
and {P(Z))R,a)'x": 2’ € A} are equicontinuous subsets of E’. Since
P(.) and Q(.) are regular measures, for given ¢ > 0 there exist open
sets UDo and U’ D6 and closed sets ZC o and Z’' Cd such that

sup |[{P(B)x, QUULYRya)a’>| < ¢/2,BCU ~ Z,Be 7 ;

and
Sueg [<QB)x, P(Z)R(a)xy| <¢f2,eU ~Z',BeZ .

By taking U, =U,U,=U";Z, = Z and Z,= Z' we have, if aC
(U x U')~(Z x Z") then

sup [<Rya)z, 2’y <&,
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which proves the regularity of Ry (.) on 4.

To show that for each x ¢ E, RB(.)x is countably additive on 4, by
Lemma 1.7, it is enough to prove that for each &' ¢ E’, {R,(.)x, 2> is
countably additive. This may be proved as in [9, Lemma 3]. (Refer,
also, [3, Th. III, 5.183].)

THEOREM 2.5. Let E be weakly (sequentially) complete and bar-
reled space. Let P(.) and @Q(.) be two commuting spectral measures
on E such that the Boolean algebra generated by P(.) and Q(.) is an
equicontinuous part of F(E). Then there exists a unique set func-
tion R(.) defined on 4* such that

(a) R(.) is an extension of R\.);

(b) for each xc E, R(.)x is countably additive;

(c¢) {R(0): 0€d*} is an equicontinuous part of L ().

Proof. For each x ¢ E and ' € E’, by the Hahn extension theorem,
there is a unique countably additive complex measure u(., «, ') defined
on 4* such that

u(0, , &') = {R(0)x, x>, 6e4,
and such that
(**) sup | (0, x, ') | = sup | <R,(0)x, x> ] .
s€4* SEA

From the uniqueness of u(-, z, 2’) it follows that w is linear in
and 2/. Since {Ry(d): 0 € 4} is an equicontinuous part of <~ (F), (**)
shows that the set {u(d, x, 2'): d € 4*} is bounded in C. Since, E is
barreled, it follows that the set {u(d, -, 2'): 6 € 4*} is an equicontinuous
part of <~ (H,C). In particular, the mapping =-—u(d, z,2’) is a
continuous linear form on E. We denote it by R'(6)x’ so that R'(d)x’
is an element of E’. The mapping ' - R'(6)x’ maps E' into £’'. For
each xc F and 2’ ¢ FE’, the scalar valued set function u(-,x,2') =
{x, R'(+)x") is an extension of {(R(-)x, 2’> so that R'(-) is an extension
of Ry(-).

Let M be the class of all o ¢ 4* for which R'(0) is the adjoint of
an operator, say R(o). We shall show that M is a monotone class
containing 4.

If oe4 then {z, R'(0)x")> = {R(0)x, ") so that R'(0) is the adjoint
of R,(c) and, hence, 0 € M. Next, let (s,) be a monotone sequence in
M and let ¢ = limog,. We claim that 0 ¢ M. For,

Lz, R'(0)z") = lim{z, R'(o,)x">
= lim {R(o,)x, "> .



SUM AND PRODUCT OF COMMUTING SPECTRAL OPERATORS 137

Since, E is weakly complete, for each x ¢ E, there is an element S(o)x
in E such that

{S(o)x, &> = lim {R(o,)x, 2> .

The mapping z — S(g)x is clearly linear, By making use of the fact
that E is barreled, it is easy to show that it is also continuous. It
is, therefore, an element of <“(E) and the adjoint of R'(g). Thus
o€ M. Since 4* is the o-algebra generated by 4, we have proved (a)
and also that R(*)x is weakly countably additive. Part (b) now follows
from Lemma 1.7.

To prove (¢), we need only to remark that from (**) it follows
that for fixed « and o

KR(o)z, &> 0 € 4%}

is bounded in C; so that {R(o)x:0 € 4*} is weakly bounded and hence
bounded in E. The result now follows from the fact that E is barreled.

THEOREM 2.6. The family {R(0): o € 4} obtained in Theorem 2.5
1s a family of commuting projection valued operators in & (E) which
satisfies the condition,

R(6 N 6) = R(0)RG), 0,5 e 4% .
This may be proved as [8, Th. 2.16].

3. Sum and product of two commuting spectral operators.
In this section we shall prove that under certain conditions sum and
the product of two commuting spectral operators are again spetral
operators.

REMARKS. Let T, and T, be two commuting spectral operators
on E. Let T),=S,+ N, and T, =S, + N, be their cannonical de-
compositions. Since 7T, and 7T, commute, it follows that N, + N,
commutes with S, -+ S, and also with T, + T,. Moreover, N, + N, is
quasi-nilpotent. Hence, T, + T, is a spectral operator if and only if
S, + S, is a scalar operator.

The same, however, cannot be said about the product T, 7T,. Maede
[6] has given an example to show that the product of an operator T
on a locally convex space with a quasi-nilpotent operator N on the same
space need not be quasi-nilpotent. But if the spectrum of 7' is compact
then TN and NT are quasi-nilpotent, since the quasi-nilpotent opera-
tors form a two sided ideal in <2, (). Thus, if T, and T, have
compact spectra then T.T, is a spectral operator if and only if S.S, is
a scalar operator on K.
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We now state and prove one of the main theorems of this paper.

THEOREM 3.1. Let E be a quasi-complete, barreled and weakly
sequentially complete locally convex space. Let T, and T, be two com-
muting spectral operators on E with corresponding spectral measures
P(.) and Q(.). Let the Boolean algebra gemerated by P(.) and Q(.)
form an equicontinuous part of £ (KE). Then (a) if P(.) and Q(.)
satisfy condition PC, then T, + T, is a spectral operator whose spectral
measure G(.) is given by

G(a) = R{(N, p): N+ prea), ac <z ;

(b) iof T, and T, have compact spectra then T,T, is a spectral operator
whose spectral measure H(.) is given by

H(a) = R{(\, p):zvpeeal, ae &7 .

Proof: (a) Let S, and S, be the scalar parts of T, and T,, respec-
tively. By the remarks preceding the statement of the theorem, it is
enough to show that S, + S, is a scalar operator.

We have, G(«) = R(¥*(«)) where ¥ is the measurable map (A, z) —
N+ pof Cx C into C. It follows from Therems 2.5 and 2.6, that
G(.) is a spectral measure and hence is regular on <&&. Let xc E and
2’ € E’ be fixed and let ¢ > 0 be given. Let 2 and z be the compact
supports of <{P(.)z, "> and <Q(.)x,2"> and ¢ the compact support of
<G(w, . Let K =8sup{|<P(@), 3], [<QU)w, o> |, KG(@)w, o)} < co.
Let (a;)M, (8;)32,, (V)52 be any finite disjoint subdivisions of o, 2 and
7, respectively, of norm less than ¢. By Lemma 1.11,

(1) |Gz, 27 = SinGlage, oy | < Ke,
(2) 8,0y — S (B, )| < Ke
(3) [<S, a7 — S2Q, )| < Ke

where \;ea;, p;€8; and v, €7v,. It follows from Lemmas 1.10 and
1.9 that the set {3; ¢,P(B;)a’} = A (say) is an equicontinuous part of
E'’, for all the partitions of 2. Hence, by the regularity of G(.) there
exist closed sets I"; such that if y,ca;, ~I";(1 =1,2, .-+, N,) then

(4) sup [ (G(a;) — GOz, ¥y | < ¢/N, .

Similarly, if we write B for the equicontinuous part {3, ptQ(v.)x}
of E’ then there exist closed sets 77; such that if y,Cca;, ~ I (1 =
1,2, ..., N,) then
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(5) sup | {(G(a) — G, ¥ | <e/N, .
Let Z, = I, Ul for i =1,2, ---, N.. We have
(6) |<Gla) — G(Z))e, a'>] < <IN,
(1) | G — G2, #>| < oM,

where M = supse, |M|. Also

(s 0:P®)) (6@ — GEa, 2|

®) = [(S 6@ ~ 6@, S 1PE Y )|
=<e¢ by (4).

Similarly,

(9) !<(>; ka(vk)X; (G(as) — G(Zi)))x, x>( <e.

139

For n =0,1,2, ..., and for each pair of integers p and ¢, we
denote by B.(p, ¢) the square consisting of all z such that 27"p <

Rez < 2(p + 1) and
27"g < Imz <L 2™(q+1).

For any closed set Z in C we have

H(Bn(p, D X(Z—Bup,@) | {N )N+ peZy asn— oo,

Therefore,

G(Z)x = lim 3, P(B.(p, ))Q(Z — B.(p, Q) ,

n—oo D,q

so that for each equicontinuous part D of E’ there exists a positive

integer m, such that

10) sup|<(G(Z) — SP(Ep, )QZ ~ £ulp, ), v’ »| < eI,

for n = n, .

Since the diameter of S,(p,q) | 0 as n— =, we can take n suffi-
ciently large so that diam B,(p, q¢) < e. Also, we shall assume that
n = max (n,, 1y, 7g). If n is so chosen, we shall write B(p, q) instead
of B,(p,q). For simplicity of notations we shall write y;,,,, for Z;, —

B(p, ). We have from (10),
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an (50620 - 5 PG, 00w . Y| < <M.

(502680 S, (PBO, 0)Qs.0) = GEZN o, |
17 =[S PED 0. — G2, SpPEY |
<e.

Similarly,

13 [{(2 2000 2 P(ED, 0@ — GZN o, S| <.

Next, let \,,, € B(p, q) be arbitrary. We have

(500 = 2 PED, DR,

D09

— (S 2000)( S PE@, 00 o, o |

(14) éZkl Ni = Npyg — Vi [KP(B(0, Q72 N Yip.0) @, 37|

%:,P,9,
< devar {R(.)x, 2"
< 16¢K,, where K, = sup | {R(d)x, 2" .
S€ 4*

Also,
l<(i§qkp,qp(,3(p, q))Q(y'i;p,q)
4o - <Z 1P (Bf)xi%f’ (B(p, Q)Q(yi,p,q»)m, %>\

< 8K, .

By the successive application of triangle inequality, it follows that

l Skd(G(k)x, > — S, &> — LSy, x| < de

where 4 is independent of &, so that
S, + Sz, a"> = Sxd(G(k)x, x> .

Hence, S, + S, is a scalar operator with the corresponding spectral
measure G(.). This proves (a).

(b) may be proved similarly. We note that if a closed set Z in
C does not contain the origin then
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Z

. A N, AN eEZ — oo,
&@A)lﬂ pEapeeZy  asm

H&mwx
so that

HZ) = lim S, P, R (5o )

If the support of (H(.)x, «’> contains the origin then in the estimation
of SMKH (.)z, "> by the sums of the form >}, (\;H(a,)x, 2> we take

X = 0 where it is assumed that «,, and none of the other «’s, contains
the origin.

REMARK. If the above theorem is to be proved for the scalar
operators instead of the spectral operators then we do not need the
condition PC, for P(.) and Q(.) and also the spectra of S, and S, need
not be compact.

4. The space 2°(1 < p < ). Let X be a locally compact and
g-compact space so that X = Dnzl K, where K, are compact subsets of
X. Let p be a positive Radon measure on X. All the integrations
over X will be assumed to be with respect to the measure p. Also,
we shall write X for the measure space (X, zt) and we shall identify
the functions which are equal almost everywhere in X.

A complex-valued measurable function f defined on X is said to
have compact support if there exists a compact set K in X such that
f vanishes in the complement, ~K, of K in X.

Let f be a complex-valued measurable function defined on X. Let
for each compact set K in X, f{ e L*(K)1 < p < ). The class of
all such functions form a linear space which we shall denote by 2°.
For each compact set K in X, we define a semi-norm p, on £2° by

Pur) = ({l ey reor.

X

The family of the semi-norms {p.: K compact in X} defines a separated,
locally convex topology 7= on Q7. We shall write 27 for the separated,
locally convex space (27, 7).

LEMMA 4.1. 027 is a complete metrisable space.

Proof. In fact, the topology 7 can be generated by a countable
family of increasing semi-norms Py , where K, C K,;, and X = lj K,.
Hence 027 is metrisable. "

Let (f,)z., be a Cauchy sequence in Q7. For each compact set K
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in X, (f.lx) is a Cauchy sequence in L?(K); and since L?(K) is com-
plete, there is a function fi e L?(K) such that f,{x— fx in L?(K) as
n— oo, For two compact sets K, and K; in X, fx, and fx, coincide
on K, N K,. Since X is g-compact, there exists a function f € 2° whose
restriction to any compact K is f,.. The given sequence converges to
f so that 2° is complete.

LEMMA 4.2, Let 1 <p < and let 1/p + 1/q =1. Then 2f F
is any continuous linear functional on Q27 there exists a g€ Q7 such
that g has compact support in X and such that

F(f) = Sng for all feor.

Proof. The subspace 2°(K) of Q¢ consisting of functions which
are zero outside a compact set K in X, can be identified with L*(K).
By the Riesz representation theorem, the restriction F, of F to this
subspace is of the form

Fe(f) = | gxf

where g, ¢ L4K). If we define g, to be zero outside K, then g, € Q7.
If K, and K, are two compact sets, then g, and g, agree on K, N K,.
Since X is o-compact, there exists a function g € 2¢ such that for each
compact K, the restriction of g to K is equal to gx; and since F is
continuous there exists a compact set K, such that |F(f)| <=1 if

S | /17 < 1. This implies that g vanishes outside K, so that g has
K

coronpact support.

For any fe Q?, we have f = f, + f. where f, = f{,, and f; = fl g,
Since f, vanishes on K, |F(f))| <1 and the same is true for the
function \f, where ) is any scalar. Hence F'(f,) = 0 and we have

F()=F() =\ o=\ or
and the lemma is proved.

THEOREM 4.3. For 1 < p < oo, the dual of Q2° is the set of all
g € Q7 having compact support. The duality s given by

o= Sxfg .

Proof. Let ge Q¢ have compact support and let g vanish outside a
compact set K. We show that the mapping F': f— S gf is a continuous
X
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y
linear functional on 2?, We write M=<SK | gl") P

Since, g vanishes on ~K, we haveS gf =0. Also gfe L/(K).
~K
Hence, S gf =\ gf < . Clearly F is linear. To show that F is
X K

continuous, let (f,) be a sequence in 2° such that f, — fe Q. Let
e > 0 be given. For each continuous semi-norm p on 27, there exists
a positive integer N such that p(f, — f) < ¢/M for all » = N. In
particular, there exists an integer N, such that

(15 = 712" < eim, for n = N, .
Now, if we apply Holder’s inequality, we obtain
[ o0z = | =] 1ot = 1
=[ ats = D)

=(Jroe) (V1 = rr)”

<e fornmn=N,.

Thus, we have proved that f— \ ¢fis a continuous and linear functional
X
on Q¢, The theorem now follows from Lemma 4.2.

ProPOSITION 4.4, For 1 < p < «. The space Q* is weakly (se-
quentially) complete.

This may be proved like Lemma 4.1 by making use of the fact
that for each compact K X, L°(K) is weakly sequentially complete.
For 1 < p < = we define, after McCarthy [7],

i“ ewjﬂj‘ .
p

Jj=1

n 2m 2T
average| >, cj;zjlp :(27:)%& de, - - S aé,
| =1 0 0

0j|=1
LEMMA 4.5. For any complex numbers \;, and for 2 < p < oo,
we have

»

> Cildih i

ik

»/2
(Z} Nk |2> < average
g,k

lejl=1,1dg|=1

< r(—g— + 2)(21 aaulf)

This is proved in [7, Propositions 1 and 2].

For the proof of the next theorem we shall need the following
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well-known result on locally convex spaces.

LEMMA 4.6. If A is any equicontinuous subset of <~ (E), then for
each continuous semi-norm p on E, there exists a continuous semi-
norm q on F such that supye, p(T2) < q(x), x € E.

THEOREM 4.7, Let P(.) and Q(.) be two commuting spectral
measures on 2°(2 < p < o). Then the Boolean algebra generated by
P() and Q(.) is an equicontinuous part of F(Q2°).

Proof. 1t is enough to show that 37, 37 a,;,P,Q;, where |a;,| =1
for all j and k¥ and 3;p, =1 and 3, Q, = I, is an equicontinuous
part of <~2(2?). Since £2* is barreled, it is enough to show that for
each fe©® and each continuous semi-norm p on 27, there exists a
constant 4 such that »(>) a;P;Q.f) =< 4.

Let ¢,c¢, ++-,¢, and d,d,---,d, be any complex numbers of
absolute value one. By Lemma 1.10, the sets {3);¢;P;}; {305 ¢;Ps)
{3 4,Q,) and {3, d,Q,} are all equicontinuous parts of <~(2%). Let
fe” and p, a semi-norm on £2° be fixed. By direct computations we
have,

S 0, PQef = (2 0P) (S 4Q)(S anesdiPsQus) -
Therefore,

(1)
= 0xn(2 a4, PRLS)
where py, is the semi-norm corresponding to p, and the equicontinuous

set {3, ¢,P;}; and pg. is the semi-norm corresponding to px and the
equicontinuous set {3, d.Q.} as given by Lemma 4.6. We have, then

p

|| ap@ur| =,

]Zk‘ ;¢ PiQuf

’

Now,

P
Average S
o

lejl=Lldjl=1

jZk ajkcjdkPijf

= S Average

K7 lejl=1,ldgl=1

S 4540,0:P;Quf } .

gk

By Lemma 4.5, this is bounded below by

| (Slasp@ure)” =|  (Sipaurpe;
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and above by
r(L+2)| (SIPQrrr:.

Hence, from (1) we have

(pK<]ZI, ajkPijf»p =rI <% + 2>2EK”<%} | PQuS !2>p/2

S ed PR

ik

(Ser)(zae)s] .

= F(—g— + 2)25 Average

K/ leji=1,1dp =1

= l’(% + 2>2 Average S
NG

lejl=L,idpl=1

Therefore, if we use Lemma 4.6 once again we find that

p]{(% @jkPijf>
F<% + 2)2/p Average p,;u<<; Cij><; dek>f>

lejl=1,ldpt=1

p 2/17
< F(E +2) Pl ) = 4, say;

for some continuous semi-norm p.... This proves the theorem.

We have already proved that the space 27(1 < p < o) is complete
metrisable and weakly (sequentially) complete. It is also barreled.
The following theorem is now an immediate consequence of Theorems

3.1 and 4.7.

THEOREM 4.8. Let T, and T, be two commuting spectral operators
on Q2 < p < o), Let P(.) and Q(.) be the corresponding spectral

measures. Then
(a) if P(.) and Q(.) satisfy condition PC, then T,+ T, is a
spectral operator whose spectral measure G(.) is given by

Gla) = R{(\, )1 N + peal, xe o7,

(b) 4if T, and T, have compact spectra then T.\T, is a spectral
operator whose spectral measure H(.) 1s given by

H(a) = R{(\, p): vpreal, xe sz .

Added in proof. The spaces 2°(1 < p < <o) are reflexive. Hence,
a consideration of the adjoint operators would show that the Theorems
4.7 and 4.8 are, in fact, valid for 1 < p < oo,

The author wishes to express his gratitude to Professor R. G.
Bartle for his valuable suggestions and guidance.
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