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Let E be a separated, quasi-complete and barreled locally
convex space. Let TΊ and T2 be two commuting, continuous
spectral operators on E. The conditions under which TΊ + T2

and TιT2 are spectral operators are obtained. Further, let X
be a locally compact and <x-compact space. Let μ be a positive
Radon measure on X. Let Ω*{X, μ)(l ^ p < oo) be the linear
space of all complex valued functions defined on X, whose pth

powers are locally integrable with respect to the measure μ.
This space is given a certain topology under which it becomes
a complete metrisable locally convex space. The sum and
product of two commuting scalar operators on ΩP(X, μ)(2 ̂  p
< oo) are scalar operators and the sum and the product of two
commuting spectral operators are spectral operators provided
that the spectrum of each operator is compact.

In this paper we prove that under certain conditions the sum and
the product of two commuting spectral operators on a locally convex
space are again spectral operators. We also obtain expressions for the
spectral measures of such sum and product. The technique used is,
in principle, similar to one employed by Pedersen [9]. Also, if X is
a locally compact and σ-compact space and μ is a positive Radon
measure on X, we consider the space ΩP(X, μ)(l <£ p < oo) which
consists of the complex valued functions, /, defined on X such that
for each compact set K in X, fζκ(ζκ is the characteristic function of
K) belongs to LP(K, μ). This is a linear space and on this space, we
define a locally convex topology by a family {pκ: K compact in X} of
semi-norms given by

G \l/J>

\f\pdμ)

Dieudonne [1] obtained some of the properties of Ω1. By using his
methods, we prove that the space Ωp( = ΩP(X, μ))(l < p < ~) is a
complete metrisable space and is also weakly sequentially complete.
We also obtain the dual of Ωp. By using some inequalities obtained
by McCarthy [7], we show that the sum and the product of two
commuting scalar operators on Ωp(2 ̂  p < oo) are again scalar opeta-
tors and the sum and the product of two commuting spectral operators
are spectral operators provided that the spectrum of each operator is
compact.
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In the original version of this paper Theorem 2.5 (and hence also
Theorem 3.1) was proved under the additional assumption that E is
bornological. The author wishes to thank the referee for pointing out
that the results, in fact, are valid without this additional assumption.

1* Preliminaries* In this section we give some basic definitions
and collect some known results. Most of these results are taken from
[4] and [5].

Throughout this work C will denote the field of complex numbers
and C the one point compactification of C. By <3£ we denote the class
of Borel subsets of C and by E a complex locally convex space which
we shall always assume to be quasi-complete and barreled. By Ef we
denote the dual of E and by J*?(E) the space of all continuous linear
maps of E into itself. By I we denote the identity map of E onto
itself. We shall always assume that £f(E) is provided with the
topology τh of uniform convergence on the bounded subsets of E.

We give the following definition due to Waelbroeck [10].

DEFINITION 1.1. λ e C is said to belong to the resolved set ρ(T)
of T e Jίf(E) if and only if there is a neighborhood Vλ of λ in C
such that there is a function μ —•> Rμ on Vλ Π C to ^f(E) satisfying,
for each μe Vλ Π C the conditions

( i ) Rμ(μl- T) = (μl- T)Rμ = I;
(ii) {Rμ: μeVλΓ)C} is bounded in £?(E).
The spectrum, sp(Γ), of T is defined by sp(Γ) = C ~ p(T). If

oo gsp(Γ) then T is called a regular element of j*f(E). The set of
all regular elements of J^f(E) is denoted by

DEFINITION 1.2. A function {P{σ): σ e &} of commuting projec-
tion valued operators defined on & with values in ^f(E) is called a
spectral measure on E if

(a) for each xeE, P( )x is countably additive in E;
(b) P(C) = I;
(c) {P(σ): σ e^} is an equicontinuous part of ^f{E).

Under the assumption that E is barreled, condition (c) may be deduced
from condition (a).

It follows from (a) that for each xeE and x'eE', (JP( )x,x'y is
a (countably additive) complex-valued measure.

LEMMA 1.3. (a) P(φ) = 0; (φ is the null set)
(b) P(σ nδ) = P(σ)P(δ), σ,δe<^.

Proof. This is proved in [8, Lemma 2.15],
An operator T e ^f(E) is said to commute with a spectral measure

P( ) if P(σ)T = TP(σ) for all σe<^.
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DEFINITION 1.4. An operator Tej^{E) is called a spectral ope-
rator if there exists a spectral measure P( ) on E such that

(a) T commutes with P( );
(b) sp (T I P(σ)E) c <J, σ e ^f;
(c) for each xeE and x'eE', the complex measure ζP( )%,%fy

has compact support.
Here T \ P(σ)E denotes the restriction of T to the subspace

P{σ)E of E.
Such a spectral measure is unique, if it exists. Also, if A e ^f(E)

commutes with T then A commutes with the spectral measure corres-
ponding to T.

Since we shall be interested only in spectral measures correspond-
ing to spectral operators we may and shall assume that whenever P( )
is a spectral measure on E, for each xeE and x' eEf ζP(-)xy xry has
compact support.

DEFINITION 1.5. An operator Sejzf(E) is called a scalar operator
if there exists a spectral measure P( ) on E such that λ is integrable
with respect to <(P( )x, xry for each xeE and x* e Ef and such that

<$x, O = [\d<P{X)x, xfy, x G E, xr G E' .
c

Every scalar operator is a spectral operator and the spectral
measure corresponding to a scalar operator is unique.

An operator NeJίf(E) i s c a l l e d q u a s i - n i l p o t e n t i f f o r e a c h x e E

and xe
 G Er

l im|<iVχ x'>\lln = 0 .
n—>oo

If £7 is quasi-complete and barreled then Ne^f(E) is quasi-
nilpotent if and only if sp (N) = {0}.

A spectral measure P(.) on E is said to satisfy condition PCQ if
for each xeE and as' e Ef there exists a compact set σ(x, xf) such that
Supp ζP(.)Qx,xfy(zσ(x,x') for each operator Qe^(E) and commut-
ing with P(.).

We take the following theorem from [5]:

THEOREM 1.6. Let E be quasi-complete and barreled. Let
T G S^(E) be a spectral operator whose corresponding spectral measure
satisfies the condition PCQ. Then T can be uniquely expressed as
T = S + N where S is a scalar operator having the same spectral
measure as T and commuting with T, and N is a quasi-nilpotent
operator commuting with S.

Conversely, if SeSf(E) is a scalar operator and Nej£f(E) is
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any quasi-nilpotent operator commuting with S then T = S + N is
a spectral operator having the same spectral measure as S.

The above decomposition of a spectral orerator is called the canon-
ical decomposition. S is called the scalar part of T and N the
radical part of T. In the sequel, whenever we consider the canonical
decomposition of a spectral operator it will be tacitly assumed that
the corresponding spectral family satisfies the condition PC0. It may
be remarked that ΐ / s p ( T ) is compact then \JxeE Supp<T(.)α;, xfy is
compact and P(.) automatically satisfies the condition PCQ.

We give the following generalization of Orlicz-Pettis theorem
which is proved in [5, Lemma 1.1.1].

LEMMA 1.7. A set function m defined on & with values in E
is countably additive in E if and only if it is weakly countably
additive.

We now prove a few lemmas which will be of use in the follow-
ing sections.

LEMMA 1.8. Let P(.) be any spectral measure on E. Then for
each bounded set B c E and each equicontinuous part A(zEr there
exists a constant K such that \ζP(σ)x,xry\ ^ K for all xeB,x'eA
and for all σ e &.

Proof. Since {P(σ): σ e &} is an equicontinuous part of
and B is bounded in E, {P(σ)x: σ e &, x e B} is bounded in E. Since
A is equicontinuous in Er it follows that {(P(σ)x, cc')>: σ e &, x e Bf

xf G A} is bounded in C. This establishes the lemma.

LEMMA 1.9. Let E be barreled and let Γ be any equicontinuous
part of £f(E). Let A be any equicontinuous part of Ef. Then the
set {T'x': x' e A, TeΓ} is an equicontinuous part of Ef. {Here Tr is
the adjoint of Te£?(E).)

Proof. Since E is barreled, it is enough to prove that for xe Er

{(x, TrxfS}:xf eA, TeΓ} is bounded in C. Since Γ is equicontinuous
in £?(E), {Tx:TeΓ} is bounded in Eand hence {<Tx, x'>: TeΓ, x' e A}
is bounded in C. This proves the lemma.

LEMMA 1.10. Let P(.) be a spectral measure on a barreled space
E. Then ^^jPiSj) is an equicontinuous part of Jίf(E) if j varies
over any finite index set and | μ5 \ rg 1 for all j . (δj are mutually
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disjoint sets in £&.)

Proof. Since E is barreled, it is enough to prove that for each
x e E and each equicontinuous part AaE' sup | (ΣftjP (δj)%, β'> I is
bounded in C. Now 3

Σ μ, P(δd)x, x'
j

£ sup I μs | Σ I <P(δj)x, x'> \
3

^ sup I μ51 4K

where K — supδ e^ \ζP(δ)x, xry\ < °° Since K is independent of x'
x'GA

and depends only on x and A, the lemma is proved.

LEMMA 1.11. Let xeE and x'eE' be fixed. Let P(.) be a
spectral measure on E and let σ be the compact support of (P(.)x, xfy.
Then for any finite disjoint subdivision (at)^=1 of σ into Borel sub-
sets of C, such that diam (σ{) < e, i = 1, 2, , N,

[xd<P{X)xy x'> - Σλ*<P(σi)x, χf>
J l

< 8εK

where K = sup | (P(δ)x, #'> | and

The lemma can be easily established by following the steps in the
proof of [2, Th. 7].

2* The product measure of two spectral measures* In this
section we shall define the product measure of two commuting spectral
measures.

Let Δ denote the algebra generated by the sets of the form σ x δ
where σ e & and δ e &. Let Δ* be the σ-algebra generated by Δ.
Each ae Δ may be expressed as

( * ) a=(j(σixδi)

where σκ e έ% and δi e &{i = 1, 2, , n) and

(0i x δi) Π (σό x δd) = φ , i φ j .

For two commuting spectral measures P(.) and Q(.) on E, we
define a set function Ro with values in £f(E) by

R0(a) = ΣPfriWi)

where aeΔ is represented in the form (*). We remark that this
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definition is independent of the representation of a.
By making use of representation (*) we can easily prove the

following lemma.

LEMMA 2.1. For aeA and βeA,

(a) R0(a n β) = R0(a)R0(f3);
(b) R0(a u β) = R*(a) + R0(β), if a n β = Φ;
(c) R0(C x C) = I.

COROLLARY 2.2. Ro(.) is a finitely additive set function on A to
The set {R0(a): a e A} consists of commuting projections.

REMARK. For given xeE and x'eE', since<P (.)x, x')y and <Q(.)
x, xfy have compact support, it follows that <720(.)a;, x*y has a compact
support in C x C.

Let X be a topological space and let A be an algebra of sets in
X. Let S(.) be a set function defined on A with values in j*f(E).
We shall say that S(.) is regular on Λ if for each x eE, for each
equicontinuous part AaE\ for each ( j e i and for each ε > 0 there
exist a closed set Zaσ and an open set UZD σ such that if δ a U ~ Z
and δ e A then

< ί c ' > | < ε .

PROPOSITION 2.3. If P(.) is a spectral measure on E, then P(.) is
regular on έ%?.

Proof. Let x e E and 4̂ an equicontinuous part in Ef be fixed.
We first show that the set S = {(P(.)x, xry%. xf e A} of complex measures
is weakly sequentially compact as a subset of ca (C, ^ ) , the space of
all bounded complex measures on &. By Lemma 1.8 there exists a
constant K such that |ζP(σ)x, xry\ ^ K for all xf e A and for ή\\σe&
so that S is uniformly bounded. Let (σn) be a decreasing sequence
of sets in & such that σn\ψ. Let A0 be the polar of A (with respect
to the duality ζE, E'y) so that A0 is a O-neighborhood in E. Let p
be the gauge function of A0 (and hence a continuous seminorm on i?).
Since P(.)x is countably additive in E, limΛ_>oo P(σ%)x = 0 in £ .
Therefore, for given ε > 0, there exists a positive integer AT such that
p(P{σn)x) < ε for all n Ξ> ΛΓ. This in turn implies that ζP(σn)x, x'y~-+Q
uniformly on A. Hence S is weakly sequentially compact [3, Th. IV,
9.1]. By [3, Th. IV, 9.2], there exists a positive (regular) measure
λ e c a ( C , &) such that limi(σ)^oζP(σ)xf x'y = 0 uniformly on A.
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Let ε > 0 be given. There exists a δ > 0 such that if 7 e & and
λ(γ) < δ then | < P ( 7 ) B , α?'>| < ε/2 for all aj'eA. Since λ is regular,
for a given σ e ^ there exists a closed set Z c σ and an open set
I7z)σ such that X(β) < δ whenever β cU ~ Z and /5 e ^ . This shows
that I <P(β)x, α'> I < ε/2 for all X ' G A SO that supx,€A | <P(β)x, x' >| < ε.
This proves the regularity of P(.) on ^ .

PROPOSITION 2.4. Let P(.) and Q(.) be two commuting spectral
measures on E such that the Boolean algebra generated by P(.) and
Q(.) is an equicontinuous part of £f(E). Then Ro(.) is regular and
countably additive on Δ.

Proof. By virtue of representation (*) it is sufficient to prove
the result for a set σ x δ e Δ where σ, δ e &'.

Let x e E and A an equicontinuous part of E' be fixed. Let Zλ c
σ aU1 and Z2aδ aU2 where Zi and i£2 are closed sets and U1 and U2

open sets in C to be specified afterwards. Let a be any set in Δ
such that acz(Uιx U2) ~ (Zx x Z2). We have, (Lemma 2.1 and
Corollary 2.2,)

sup I <J?0(α)α;, x'> | = sup | ̂ ((U, x J72) - (Zι x
x'QA x>eA

= sup I <i2o((ϋi ~ Zx) x ί72 U ̂  x (C72 ~ Zt))x,
ϊ'64

^ sup I <fio((U,. ~ Zx) x
Ϊ'64

+ sup I ζRoiZt x (U2

= sup I (QiUJPM ~ Z,)x, Ro(aγx'}|

+ sup

Now, by hypothesis {R0(a): a e Δ} is an equicontinuous part of
Hence, by Lemma 1.9, {RQ(a)'xf: x' e A} and hence {Q(?72)'β0(^)^': »' e A}
and {PίZJ'iZoί^)'^': ̂ ' € A} are equicontinuous subsets of E'. Since
P(.) and Q(.) are regular measures, for given ε > 0 there exist open
sets Z7z)σ and UfZ)δ and closed sets Zczσ and Z'aδ such that

sup I <P(/S)a?, Q(U2yR0(a)'x'> \ < ε/2, βczU- Z,βe<^

and

sup I <Q(β)x, P(ZyRJίa)'xy \ < ε/2, β e Uf - Zr, β e ^ .

By taking i7L = [/, t/2 = Z7'; Zγ = Z and ^ 2 = Z r we have, if α c
(17 x ?7') - (Z x Zf) then

sup I ζRQ(a)x, xfy I < ε ,
'β4
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which proves the regularity of Ro(.) on A.
To show that for each xeE, R0(.)x is countably additive on A, by

Lemma 1.7, it is enough to prove that for each x' e E', (R0(.)x, x'y is
countably additive. This may be proved as in [9, Lemma 3]. (Refer,
also, [3, Th. Ill, 5.13].)

THEOREM 2.5. Let E be weakly {sequentially) complete and bar-
reled space. Let P(.) and Q(.) be two commuting spectral measures
on E such that the Boolean algebra generated by P(.) and Q(.) is an
equicontinuous part of J*f(E). Then there exists a unique set func-
tion R(.) defined on Δ* such that

(a) R(.) is an extension of Ro(.);
(b) for each xeE, R(.)x is countably additive;
(c) {R(δ): δ e Δ*} is an equicontinuous part of

Proof. For each xeE and x' e E1", by the Hahn extension theorem,
there is a unique countably additive complex measure u(., x, xr) defined
on Δ* such that

u(δ, x, x') = <7?0(δ)#, x'y, δ e Δ ,

and such that

(**) sup I u(δ, x, xf) I = sup I <R0(δ)x, x'y | .

From the uniqueness of u( ,x, xf) it follows that u is linear in x
and xr. Since {R0(δ): δ e Δ} is an equicontinuous part of j*f(E), (**)
shows that the set {u(δ,x, x'): δ eΔ*} is bounded in C. Since, E is
barreled, it follows that the set {u(δ, -,xf): Sez/*} is an equicontinuous
part of J*f(E,C). In particular, the mapping x -+u(δ, x, x') is a
continuous linear form on E. We denote it by Rf{δ)xr so that R'(δ)xr

is an element of E'. The mapping xf ~->R'(δ)x' maps E' into Ef. For
each xeE and x'eE', the scalar valued set function u( ,x,x') =
<a?, Rr( )x'y is an extension of ζR0( )x, x'y so that i2'( ) is an extension
of Λί( ).

Let M b e the class of all σ e J * for which R'(σ) is the adjoint of
an operator, say R(σ). We shall show that M is a monotone class
containing A.

If σ e A then <#, R'(σ)xry = ζRQ(σ)x, xry so that R'(σ) is the adjoint
of RQ(σ) and, hence, σ e M. Next, let (σn) be a monotone sequence in
M and let σ = lim σn. We claim that σ e M. For,

, R'(σ)x'y = lim<a?, R'{σn)xfy



SUM AND PRODUCT OF COMMUTING SPECTRAL OPERATORS 137

Since, E is weakly complete, for each x e E, there is an element S(σ)x
in E such that

<S(σ)x, x'> = lim <R(σn)x, x'> .

The mapping x —> S(σ)x is clearly linear. By making use of the fact
that E is barreled, it is easy to show that it is also continuous. It
is, therefore, an element of ^(E) and the adjoint of R'(σ). Thus
σ G M. Since z/* is the σ-algebra generated by A, we have proved (a)
and also that R(')x is weakly countably additive. Part (b) now follows
from Lemma 1.7.

To prove (c), we need only to remark that from (**) it follows
that for fixed x and xf

{<β(σ)x, xy. σ e A*}

is bounded in C; so that {R(σ)x:σ e J*} is weakly bounded and hence
bounded in E. The result now follows from the fact that E is barreled.

THEOREM 2.6. The family {R(cr): o e A) obtained in Theorem 2.5
is a family of commuting projection valued operators in j^f(E) which
satisfies the condition^

R(σ Π δ) = R(σ)R(δ), σ,

This may be proved as [8, Th. 2.16].

3* Sum and product of two commuting spectral operators*

In this section we shall prove that under certain conditions sum and
the product of two commuting spectral operators are again spetral
operators.

REMARKS. Let TL and T2 be two commuting spectral operators
on E. Let T1 = S1 + Nλ and T2 = S2 + N2 be their cannonical de-
compositions. Since T1 and T2 commute, it follows that Nx + N2

commutes with SL + S2 and also with 2\ + T2. Moreover, Nλ + iV2 is
quasi-nilpotent. Hence, T1 + T2 is a spectral operator if and only if
Si + S2 is a scalar operator.

The same, however, cannot be said about the product TXT2. Maede
[6] has given an example to show that the product of an operator T
on a locally convex space with a quasi-nilpotent operator N on the same
space need not be quasi-nilpotent. But if the spectrum of T is compact
then TN and NT are quasi-nilpotent, since the quasi-nilpotent opera-
tors form a two sided ideal in ^Sfr(E). Thus, if 2\ and T2 have
compact spectra then 2\T2 is a spectral operator if and only if SίS2 is
a scalar operator on E.
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We now state and prove one of the main theorems of this paper.

THEOREM 3.1. Let E be a quasi-complete, barreled and weakly
sequentially complete locally convex space. Let Tx and T2 be two com-
muting spectral operators on E with corresponding spectral measures
P(.) and Q{.). Let the Boolean algebra generated by P(.) and Q(.)
form an equicontinuous part of j*f(E). Then (a) if P(.) and Q(.)
satisfy condition PC0 then Tγ + T2 is a spectral operator whose spectral
measure G(.) is given by

G(ά) = R{(X, μ): X + μ e α}, a e &

(b) if T1 and T2 have compact spectra then TXT2 is a spectral operator
whose spectral measure H{.) is given by

H(a) = i2{(λ, μ): Xμ e α}, a e & .

Proof: (a) Let Sγ and S2 be the scalar parts of T1 and T2, respec-
tively. By the remarks preceding the statement of the theorem, it is
enough to show that Si + S2 is a scalar operator.

We have, G{a) = R{Ψ~ι{a)) where Ψ is the measurable map (λ, μ) —>
X + μ of C x C into C. It follows from Therems 2.5 and 2.6, that
(?(.) is a spectral measure and hence is regular on &. Let x e E and
xf e Ef be fixed and let ε > 0 be given. Let Ω and τ be the compact
supports of <(P(.)x, xry and <(Q(.)#, x'̂ > and σ the compact support of

Let («»)&, (βj)*li, (lk)kli be any finite disjoint subdivisions of σ, β and
τ, respectively, of norm less than ε. By Lemma 1.11,

<Kε,

y

z' Q ^ i / Q /y τ ' \ v/u D ^ ^^ /v'\ i ^ if?

where X^a^ μde βj and vΛe7Λ. It follows from Lemmas 1.10 and
1.9 that the set {X^ μjP(βj)'x'} = A (say) is an equicontinuous part of
Er, for all the partitions of Ω. Hence, by the regularity of G(.) there
exist closed sets Γ{ such that if χ{ a a{ ~ Γ4 (i = 1, 2, , N,) then

( 4 ) sup I <(G(α,) - G(χ,))x, ̂  | < e/iSΓ, .

Similarly, if we write B for the equicontinuous part {Σ& /*Q(^)'^}
of £" then there exist closed sets Γ\ such that if ^ c ^ ^ PJ (i —
1,2, •••, iVJ then
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( 5 ) sup I <(G(α4) - G(xd)x, y'> \ < e/N, .
y' eB

Let Z( = Γi U Γ'i for i = 1, 2, , Nt. We have

( 6 ) I <<?(«,) - GiZi))x, x'> I < e/JVi ,

139

where Λf = sup^ea | λ |. Also

<(fΣ /
(8) Σ (G(ai) - G(^))x,

^ e, by (4) .

Similarly,

( 9 )

For % — 0,1, 2, , and for each pair of integers p and g, we
denote by βn(p, q) the square consisting of all z such that 2~np <
Re z ^ 2~%(p + 1) and

For any closed set Z in C we have

U (βΛP, q)x{Z- βn(p, q)) ί {(λ,

Therefore,

- lim

as n

so that for each equicontinuous part D of E' there exists a positive
integer %# such that

(10) sup
V' e Ώ

q)) k ^

for n ^ nD

Since the diameter of βn(p>q) J 0 as ti-^cx), we can take w suffi-
ciently large so that diam βn(p, q) < ε. Also, we shall assume that
n ^ max (nx, nA, nB). If n is so chosen, we shall write β(p, q) instead
of βn(p, q). For simplicity of notations we shall write yitP,q for Zt —
β{p, q). We have from (10),
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(11)

(12) Σ (P(β(p,

< ε .

Similarly,

(13) |<( (Σ ^Q(7*))(.Σ (P(β(P, q))Q(Vi.p.q) -

Next, let Xp,q e β(p, q) be arbitrary. We have

(14)

Σ (λ4 - \Ptt)P(β(p, q))Q{yitP,q)
•i,p,q

Σ I λ, - λPf f f -
i,P,g,k

, where J^0 = sup
δ

Also,

(15)

<εM

I, X < e

, «))Q(7* Π ̂ ,

, xfS>

By the successive application of triangle inequality, it follows that

I \ < Aε ,

where A is independent of ε, so that

+ s2)χ, χfy =

Hence, Sι + S2 is a scalar operator with the corresponding spectral
measure G(.) This proves (a).

(b) may be proved similarly. We note that if a closed set Z in
C does not contain the origin then
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U PΛP, Q) X -5-7—Γ I ttχ> vY- ^μzZ) as ^ -> 00 .
β«(p, q)

so that

Z
- lim Σ P(β«(P, Q))Q

If the support of ζH(.)x, xry contains the origin then in the estimation

of \xd(H(.)x, xry by the sums of the form Σ* <X-H"(<*t)#> x'y w e take

λ0 — 0 where it is assumed that α0, and none of the other α's, contains

the origin.

REMARK. If the above theorem is to be proved for the scalar
operators instead of the spectral operators then we do not need the
condition PC0 for P(.) and Q(.) and also the spectra of & and S2 need
not be compact.

4* The space Ωp(l £ p < °o) Let X be a locally compact and
σ-compact space so that X = \Jn=1 Kn where Kn are compact subsets of
X. Let μ be a positive Radon measure on X. All the integrations
over X will be assumed to be with respect to the measure μ. Also,
we shall write X for the measure space (X, μ) and we shall identify
the functions which are equal almost everywhere in X.

A complex-valued measurable function / defined on X is said to
have compact support if there exists a compact set K in X such that
/ vanishes in the complement, ~K, of K in X.

Let / be a complex-valued measurable function defined on X. Let
for each compact set K in X, fζκeLp(K)(l <̂  p < <>o)β The class of
all such functions form a linear space which we shall denote by Ωp.
For each compact set K in X, we define a semi-norm pκ on Ωp by

The family of the semi-norms {pκ: K compact in X} defines a separated,
locally convex topology τ on Ωp. We shall write Ωp for the separated,
locally convex space (Ωp, τ).

LEMMA 4.1. Ωp is α complete metrίsαble space.

Proof. In fact, the topology τ can be generated by a countable
oo

rily of increasing semi-norms Pκ , where Kn C Kn+1 and X = \J Kn.
% n+l

Lee Ωp is metrisable.
Let (fn)n=i be a Cauchy sequence in Ωp. For each compact set K
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in X, (fnζκ) is a Cauchy sequence in LP(K); and since LP(K) is com-
plete, there is a function fκeLp(K) such that fnζκ—*fκ in LP(K) as
n—+oo9 For two compact sets Kλ and K2 in X, fKl and /^2 coincide
on Kx n iζ>. Since X is cr-compact, there exists a function feΩp whose
restriction to any compact K is fκ. The given sequence converges to
/ so that Ωp is complete.

LEMMA 4.2. Let 1 < p < oo αwd Zβί 1/p + 1/g = 1. Then if F
is any continuous linear functional on Ωp there exists a g e Ωq such
that g has compact support in X and such that

F(f) = ( gf for all feΩp .
Jx

Proof. The subspace ΩP(K) of Ωp consisting of functions which
are zero outside a compact set K in X, can be identified with LP{K).
By the Riesz representation theorem, the restriction Fκ of F to this
subspace is of the form

Fκ{f) = I gκf,\

where gκ e Lq(K). If we define gκ to be zero outside K, then gκ e Ωg.
If Kγ and K2 are two compact sets, then gKl and gK2 agree on ̂ f] K2.
Since X is σ-compact, there exists a function g e Ωq such that for each
compact K, the restriction of g to K is equal to gκ; and since F is
continuous there exists a compact set Ko such that | .F(/) | ^ 1 if
I \f\p ^ 1. This implies that # vanishes outside Ko so that ^ has
compact support.

For any fe Ωp, we have f = f + f2 where /, = fζKo and f2 = fζ~Ko.
Since f2 vanishes on K0,\F(f2)\^l and the same is true for the
function λ/2 where λ is any scalar. Hence F(f2) — 0 and we have

F(f) = F(f1)= \ gKQf= \ gf
Jκ0 Jx

and the lemma is proved.

THEOREM 4.3. For 1 < p < oo, the dual of Ωp is the set of all
g e Ωq having compact support. The duality is given by

</, g>=\ fg.
JX

Proof. Let g e Ωq have compact support and let g vanish outside a

compact set K. We show that the mapping F: /—> \ gf is a continuous
)x
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linear functional on Ωp. We write M =
\\κ

Since, g vanishes on ~K, we have I gf'= 0 . Also gfeL\K).
#/ = I gf < oo. Clearly F is linear. To show that F is

X JK

continuous, let (/n) be a sequence in βp such that fn—+feΩp. Let
ε > 0 be given. For each continuous semi-norm p on Ωp, there exists
a positive integer JNΓ such that p{fn - /) < e/Λf for all n ̂  N. In
particular, there exists an integer JV0 such that

for n ̂  No .

Now, if we apply Holder's inequality, we obtain

^\ \g{fn~f)\
JX

ί g(f»-f)

= \jg(L-f)\

< ε, for n ̂  NQ .

Thus, we have proved that /—> l gfis a continuous and linear functional

The theorem now follows from Lemma 4.2.on

PROPOSITION 4.4. For 1 < p < oo. The space Ωp is weakly (se-
quentially) complete.

This may be proved like Lemma 4.1 by making use of the fact
that for each compact KaX,Lp(K) is weakly sequentially complete.

For 1 <£ p < oo we define, after McCarthy [7],

Σaverage
Icy 1 = 1

LEMMA 4.5. For

dθn

complex numbers Xjk and for 2 <̂  p <

\2>/2

j \jk |M ^ average

This is proved in [7, Propositions 1 and 2].

For the proof of the next theorem we shall need the following
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well-known result on locally convex spaces.

LEMMA 4.6. If A is any equicontinuous subset of £f(E), then for
each continuous semi-norm p on E, there exists a continuous semi-
norm q on E such that supre^p(Ta;) ^ q(x), xeE.

THEOREM 4.7. Let P(.) and Q(.) be two commuting spectral
measures on Ωp(2 <̂  p < oo). Then the Boolean algebra generated by
P(.) and Q(.) is an equicontinuous part of

Proof. It is enough to show that Σ?=i Σ?=i UjkPjQk, where |αifc| = 1
for all j and k and Σ i PJ = I a n d Σ& Qk = I, is an equicontinuous
part of ^f(Ωp). Since βp is barreled, it is enough to show that for
each feΩp and each continuous semi-norm p on Ωp, there exists a
constant A such that p(Σ ajkPjQkf) ^ Λ.

Let Ci, c2, , cn and dx, rf2 , dm be any complex numbers of
absolute value one. By Lemma 1.10, the sets {ΣJJCJPJ}; {Σy CjPj};
{Σk dkQk) and {^k dkQk} are all equicontinuous parts of J*?(ΩP). Let
feΩp and pκ a semi-norm on Ωp be fixed. By direct computations we
have,

Σ

Therefore,

(1)
Pκ( Σ

j,k

s'-«?*βw

where pκ, is the semi-norm corresponding to pκ and the equicontinuous
set {ΣJJ CjPj}; and pκ,, is the semi-norm corresponding to pκ, and the
equicontinuous set {Σk dkQk} as given by Lemma 4.6. We have, then

Σ a,,P,Q,f ' £ \ Σ « Λ i P A /
3,k JK" j,k

Now,

Average I
|cj|=l,|dfc|=l JK"

Σ
jk

aάkcάdkPάQJ

= I Average

JK" 1^1=1,1^1=1

By Lemma 4.5, this is bounded below by

S i \PI2 Γ
I 2-ι I ajk-tWkJ I ) — \ 12-1

K"\j,k J JK"

\Ύ12
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and above by

Hence, from (1) we have

\P/2

Σ< p{•£- + 2 ) 1 Average
Li

= Γ ( | - + 2) Average^ | ( Σ C Λ J ( Σ <

Therefore, if we use Lemma 4.6 once again we find that

\j,k J

Average

2J"W'"(/) = Λ say;

for some continuous semi-norm pκ,,,. This proves the theorem.

We have already proved that the space Ωp(l < p < oo) is complete
metrisable and weakly (sequentially) complete. It is also barreled.
The following theorem is now an immediate consequence of Theorems
3.1 and 4.7.

THEOREM 4.8. Let TΊ and T2 be two commuting spectral operators
on Ωp(2 ^ p < oo). Let P(.) and Q(.) be the corresponding spectral
measures. Then

(a) if P(.) and Q(.) satisfy condition PC0 then Tx + T2 is a
spectral operator whose spectral measure G{.) is given by

G(a) = R{(\, μ): λ + μ e a), a e &;

(b) if Tx and T2 have compact spectra then TXT2 is a spectral
operator whose spectral measure H(.) is given by

H(a) = R{(X, μ): Xμ e a}, a e & .

Added in proof. The spaces Ωp(l < p < oo) are reflexive. Hence,
a consideration of the adjoint operators would show that the Theorems
4.7 and 4.8 are, in fact, valid for 1 < p < oc.

The author wishes to express his gratitude to Professor R. G.
Bartle for his valuable suggestions and guidance.
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