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The complex inversion theory for the convolution trans-
formation, which is due to Hirschman and Widder, is extended
to certain generalized functions. This is accomplished by
transferring the complex inversion formula onto the testing*
function space for the generalized function under considera-
tion and then showing that the limiting process in the result-
ing formula converges with respect to the topology of the
testing function space.

The Hirschman-Widder convolution transformation [1] has recently
been extended to certain classes of generalized functions [2], and their
real inversion formula [1; pp. 127-132] has been shown to be still valid
when the limiting operation in that formula is understood as weak
convergence in the space £&' of Schwartz distributions [3]. The
purpose of the present work is to extend the complex inversion formula
[1, Th. 7.1b, p. 231] in a similar way to the generalized convolution
transformation.

The notation and terminology of this work follows that of [2].
& denotes the real one-dimensional euclidean space, and all testing
functions herein are defined on <%. Throughout this work, t and x
are variables in &% A function that possesses continuous derivatives
of all orders every-where on & is called smooth. If / is a generalized
function on &, the notation /(£), where £ e ̂ g5, is used merely to
indicate that the testing functions, on which / is defined, have t as
their independent variable; it does not mean that / is a function of
t. <(/, φy denotes the number assigned to some element φ in a testing
function space by a member / of the dual space. Sometimes we write
</(£), φ(t, x)yt. This means that, for each fixed x, <p(t, x) as a function
of t is a testing function to which the generalized function / is being
applied; the subscript t is used to emphasize which variable is the
independent variable for the testing functions of /. The fcth deriv-
ative of an ordinary or generalized function f(t) is denoted alternatively
by Dkf, Dϊf(t), or f{k)(t). Finally, D is the space of smooth functions
on & having compact supports. The topology of D is that which
makes its dual the space D' of Schwartz distributions on ^ [ 3 ; Vol.
I, P. 65].

2* The spaces £fctd and £f'etd. The generalized functions appear-
ing in this paper were discussed in [2; §3], We briefly review their

147



148 J. N. PANDEY AND A. H. ZEMANIAN

definition and paramount properties here.
Let c and d be two fixed real numbers, and let ιcetd(t) be a fixed

smooth positive function defined on — co < t < co such that

t _c<3 < t < _ι

J^cd is defined as the linear space of all complex-valued smooth func-
tions φ(t) on — cχ3 < t < co such that for each k = 0, 1, 2,

( 1 ) 7k(φ) = 7etd,k(φ) = Slip | ICetd(t)φ*\t) | < oo .
-oo<ί<oo

We assign to £/?c,d the topology generated by the collection of semi-
norms {ΎJΓ=O. S^c,d is a sequentially complete Hausdorff locally convex
topological linear space. Differentiation is a continuous linear mapping
of £^c,d into itself.

The dual = 5 ^ of jg^d is also sequentially complete. Under the
customary definition of differentiation of generalized functions, namely,

</ ( 1 ), Ψ> = </, -Ψ{1)> fe j*f'etd, φej^c,d,

differentiation is a continuous linear mapping of £f'etd into itself. The
generalized functions with which we shall be concerned in this work,
are the members of ^'c,d for various choices of c and d.

The restriction of any fe^c,d to &r is in sr' because £& c £fCtd

and the topology of Si is stronger than that induced on it by S^c,d.
Similarly, if c ̂  a and b <£ d, then J^fa,h c J^^, and the topology of
Jϊ?a,b is stronger than that induced on it by ^c,d. Consequently, the
restriction of any fej5f'c,d to £fath is in £f'a,h.

3* The generalized convolution transformation. Let us first
specify the type of kernel for which our complex inversion theory
has been constructed. Let s be a complex variable. Following
Hirschman and Widder [1; p. 212], we set

( 2 ) () f [ ^

where the ak are real numbers such that 0 < aι ^ a2 ̂  α3 ̂  and

K m — = Ω (0 < Ω < co) .
*-~ ak

Also, let

( 3 )
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G(z — t) will be the kernel of our convolution transformation.
Hirschman and Widder [1; pp. 213-214] have proven

LEMMA 1. A. Let σ = Re s and τ = Im s. Then,

\E(σ + iτ)\ = O(e*fllΓ|) \ τ | — oo ,

and, for each rj > 0 ,

I E{σ + iτ) I'1 = o{e"7C{Q"ΊlW) | τ \ -* co ,

where both estimates hold uniformly for σ in any finite interval.
B. G(z) is an analytic function in the strip \ v | < πΩ, where

v — Im z.
C. Let u = Re z, and let μ be the multiplicity of the zero of

E(s) occurring at the point s — α:. Then,

G(z) = p(z)e-* + R+(z) ,

G(z) = p(-z)e*« + R4z) ,

where p(z) is a polynomial of degree μ — 1 and ivhere, for each
nonnegative integer n,

R™(z) = O(eia^ε)u) u - > - oo ,

for some e > 0, uniformly in every proper substrip \v\ f£ π(Ω — η)
of the strip \ v | < πΩ.

By the above estimates on G(z), if c < αL, d > —α1? and « is a
fixed point in the strip | v \ < ττί2, then G(g — ί) as a function of ί is
in J*fc,d. Consequently, we can define the convolution transform F(z)
of a generalized function / e ^ ' , r f by

(4) F(z) - </(*), G(» - ί)> I I m « | < πfl .

Thus, under the stated restrictions on c, ώ, and ,̂ our generalized
convolution transformation maps J2f'c,d into the space of ordinary
functions defined on the strip |Im z \ < πΩ.

THEOREM 1. Let G(z) be defined by (2) and (3). Also, let c < aίy

d > —au and fe J^f

c,d. If F{z) is defined by (4), then F(z) is analytic
on the strip | Im z \ < πΩ, and

G(1)(z - ί)> I Im s | < TΓ.Q .

Proof. Let 2 be a fixed point of the strip \lmz\ < πΩ. Also,
let C and d be two concentric circles lying entirely within the said
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strip and having centers at z and radii r and τ1 respectively, where
0 < r < r lβ Finally, let Δz be a complex increment such that
0 < I Δz I < r, and consider

A_ [F(z + Δz) - TO] - </(ί), G(1)(* - ί)> - </(*), <U*)>

where

βJz(t) = — [G(z + Δz - t) - G(z - ί)] - G(L)(z - t) .
Δz

Our theorem will be proven when we show that θJz(t) —* 0 in £fCtd as
1 Δz I —> 0. By using Cauchy's integral formulas, we may write

X

- t) dr
2π% )Cι{ζ- z- Az)(ζ - zf

By Lemma 1C, there exists a constant Bk not depending on t or
ζ e d such that

I κc,Λt)G(k>(ζ -t)\<Bk - co < ί < oo, ζ e C t .

Moreover, \ζ — z — Δz\> r,, — r and | ζ — z | = n if ζ 6 CΊ. Therefore

which completes the proof.

4 Complex inversion. With ^(s) being defined by (2), set

(6)

It is a fact that iί(2;) is analytic and single-valued in the z-plane slit
along the imaginary axis from —iπΩ to iπΩ. Moreover,

(7) E(s) = -J-^\ K{z)e°*dz
c

where C is a closed rectifiable curve going in the positive direction
around the segment [ — iπΩ, iπΩ] on the imaginary axis [1; p. 223].

Now let CP be a closed rectifiable curve lying entirely within the
strip [ Im z \ < Ωπ/p(0 < ρ< 1) and going in the positive direction around
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the segment [ — iπΩ, iπΩ] on the imaginary axis. The complex inversion
formula for the convolution transform (4) is

(8) /(ί) = lim—L-f K(z)F(t + pz)dz

where weak convergence in &t' is understood. Note that, since t is
real, 0 < p < 1, and | I m « | < πΩ/p9 it follows from Theorem 1 that
F(t + pz) is analytic on CP. Hence, the integral in (8) converges.

THEOREM 2. Let E{s) be defined by (2), G(z) by (3), and K(z) by
(6). Also, let CP be the curve described above. If fe^'c>d, where
c < aλ and d > — au and if F(z) is the convolution transform of f in
accordance with (4), then, for each φe& and as p —>1 —,

2π% Jc
( 9)

This theorem will be proven by justifying the steps in the follow-
ing manipulation:

(10)

(11) = /φ(t), —K- \ K(zKf(x), G(t + pz- x)>xdz\
\ 2π^ Jcp /t

(12) - _ L - j K(zX<p(t), </(»), G(ί + ^ -

(13) - _ ^ _ K(zKf(x), <cp{t), G(t + pz- x)>t>xdz
2τn Jc^

(14) = /f(x), —— ί K{z)<<p(t), Git + pz -
\ 2π^ J cp

(15)

First of all, by the analyticity of K(z) and jP(ί + pz), the integral
on Ĉ  inside (10) is an analytic function of t[4; p. 99]. Consequently,
(10) has a meaning for φ e £& and is, in fact, an ordinary integration
on t. That (10) is equal to (11) is obvious. Next, (11) becomes (12)
upon interchanging the integrations on t and z, a process that is
justified by the facts that φ(t) is smooth and of compact support. K(z)
is analytic on CP9 and </(&), G(w — x)y is analytic for | Im w \ < πΩ.

Our next objective is to show that (12) is equal to (13). Assume
that the support of φ(t) is contained in the closed finite interval
[A, B]. For each m — 1, 2, 3, , we partition [A, B] into m subinter-
vals whose lengths are Δtv,m{v = 1, , m). Let ζ,,m be a point in the
yth subinterval, and assume that the maximum of the JtVfΏl tends to
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zero as m tends to infinity. Then,

<?>(*), </(*), G(t + pz- x)>x>t = \Bφ(tKf(x), G(t + pz- x)>xdt

(16) = lim
m—»co

= lim

\

pz-

If we can show that the sum within the last expression converges in

S B

<p(t)G(t + pz — x) dt as m —• oo, then the fact that / e =2^^
will imply that (16) is equal to

pz - x)>} ,

which in turn will prove that (12) truly equals (13).
For any fixed k = 0, 1, 2, , fixed z e CP, and fixed p(0 < p < 1),

set

(17)

r m

, m) = κtli(x)Dk. Σ ^(ζ.,m)G(ζ.,O T + pz - x)ΔtVtm

- Vφ{t) G(t + pz - x)dt\

JGw(ζ,,m + pz- x)Δtυ,

differentiation under the integral sign is permissible here. We need
merely show that A(x, m) tends uniformly to zero on — co < x < oo
a s m —> co.

By virtue of the asymptotic properties of G{k)(t + pz — x) (Lemma
1C) and the conditions c < aγ and d > — a19 for an e > 0 we can choose
X so large that

fcCtd(x)G{k)(t + pz- x) ± Q
3 LJA

for A ίg t ^ B and \x\ > X. Therefore, for | x | > X

εtcCid(x) J^ φ(t)G{k)(t + pz- x)dt

and

(18)
Σ pz - x)AtVi7)

ψ { t ) '



COMPLEX INVERSION THEORY 153

We can now choose m0 so large that for all m > m0, the right-hand
side of (18) is no greater than 2ε/3. Thus, for | x | > X and m > m0,

, m) I < ε; i.e., A(x, m) tends uniformly to zero for | x | > X as

Now, φ(t)G{k)(t + pz — x) is a uniformly continuous function of
(ί, B) on the domain A ^ t ^ B and — X ^ a; ^ X Consequently, the
quantity within the brackets on the right-hand side of (17) tends
uniformly to zero on - I ^ a ^ I a s m-^oo, The same is true for
A(x, m) because κc,d(x) is bounded on — X ^ x <̂  X. This completes
the proof of the equality between (12) and (13).

That (13) is equal to (14) is proven in the same way. Indeed,

<φ(t), G(t + pz- x)}

is also analytic for | Im pz | < πΩ and possesses the same asymptotic
properties as x —> ± oo as does G(t + pz — x). Consequently, we can
partition the curve CP into m arcs and proceed exactly as before.

The last step, namely that (14) tends to (15) as p —> 1 —, is estab-
lished by proving that

K- \ K(z)<φ(t), G(t + pz-

converges in ^Cfd to φ(x) as p —> 1 —. To do this, we first prove three
lemmas.

This simple proof of the next lemma was suggested to the authors
by the referee.

LEMMA 2. Let K(z) and G(z) be defined as before, then

(19) — L _ f iί(z)<l, G(t + pz- x)>tdz = 1
2πι }cp

for all — co < x < oo. (Here, 1 represents the function that is iden-
tically equal to 1 on — oo < t < oo.)

Proof. By Cauchy's theorem and Lemma 1C

(20) <1, G(t + pz- x)}t = ί" G(t + pz- x)dt = 1 ,

while it follows from (7) with s = 0 that

(21) - ί - Γ - ί K(z)dz =

2JZ% i
if 0 < p < 1 .

LEMMA 3. Let
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(22) G{p, t) =

If c < au d > —au and δ > 0, ί/^en, as ,0—• 1 —, e~ctG(p, t) tends uni-
formly to zero on — oo < t < — <5, cmd e~dtG(p, t) tends uniformly to
zero on δ < t < oo.

Proof. We shall prove the assertion only for e~ctG(p, t) since the
proof for e~dtG(p, t) differs in only trivial ways.

If c ^ 0, then e~ctG(p, t) is nonnegative and monotonic increasing
on — CXD < t < 0 according to [1; Th. 4.2, p. 221]. Consequently, it
converges uniformly to zero on - c o < ί < — δ as ,o—>1— since it con-
verges to zero at t = δ[l; Corollary 4.2, p. 222].

Next, assume that 0 < c < alm By [1; p. 220], for | Re s \ < ax

(23)

We may differentiate (23) with respect to s under the integral sign
any number of times because each such differentiated integral con-
verges uniformly in every compact subset of the open strip | Re s | < al9

in view of [1; Th. 4.1D, p. 219]. Hence,

(24)

When s is restricted to real values with — at < s < a19 we may use
logarithmic differentiation to compute (24) [4; p. 16].

n E(ps) _ E(ps) n , E(ps)
S~WΓ~ E(8) s g E(s)

28(1 -28(1 p) £

The term by term differentiation of a series used herein is valid
because the result converges uniformly in compact subsets of

— aι<s<aι.

Another term by term differentiation, which is again valid, shows that

(26) D

where the function M(s, p) tends to a finite limit as ρ-+ 1— for every



COMPLEX INVERSION THEORY 155

real s such that — αx < s < α1#

Finally, choose the real number a such that 1 < a < ĉ /c. Then,
since G(,o, t) is nonnegative and monotonic increasing on — ̂  < t < 0
[1; Th. 4.2, p. 221], for t < 0

0 ^ (a - 1) (^-LYe-
etG(p,t) £ \tlau*e-eauG(ρ, u)du ̂  Γ u2e~cauG(ρ,u)du

\ a / it J-oo

or

(27) r-G( A ί) ^
 ( ' " nWe*' P)

( α - l)(-t/ay

By our previous results, this quantity tends uniformly to zero on
<£<<? as p—• 1 —, which is what we wished to show.

LEMMA 4. Lei ̂ e ̂ , c < α l r ώ > — αx, and G^, ί) δβ defined by
(22). Then, for each fixed nonnegative integer k,

(28) N(x, p) - Λ:C,,(X) Γ [^(fc)(0 - ^(fc)(a;)]G(^, ί - x)dt
J-oo

ίo zero as /? •—• 1— uniformly on — co < # < co.

Proof. We break up the integration in (28) into integrations on
— co<t<x — δ, x — δ<t<x + δ; and x + δ < t < oo (δ > 0), and

denote the corresponding quantities by Ĵ α?, |θ), I2(x, p), and /3(.τ, ̂ o)
respectively.

N(x, p) = Ux, p) + /2(.τ, ^) + J3(α, /θ) .

First of all, since G(ρ, t - x) > 0 and ί°° G(/θ, ί - a?)dί = 1 [1; p.

219],

\'+\φιk)(t) - Ψ w(χ)]G(p, t - x)dtI Ux, p) i =

S κc,d(%) s u p

^ Kc,d(w)δ SUp \φ{k+1)(τ) I .

Now, φ is smooth and of compact support. Consequently, the last
quantity is bounded by δB where B is a constant with respect to x
and δ when δ is restricted to 0 < δ < 1. Therefore, given an

ε > 0, I I2(x, p) I

is bounded by ε for δ = min (1, εjB) and for 0 < p < 1. Fix δ this
way.
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Next, consider

U«) = fcc,d(x) [~*φ^(t)G(p, t - x)dt

G(p, t-x)dt.

Using the fact again that G(p, t) is nonnegative everywhere, we may
write

0 ^ [Όip, t - x)dt =4rV δ2°(P' y)dy^4r\ y2G(p, y)dy

^ 44 Γ yG{p<y)dy

According to [1; Th. 4.1A, p. 219], the last quantity is equal to

which tends to zero as p—>1 —. Since /cc>d(x)φ(k)(x) is bounded for all
x, this shows that the second term on the right-hand side of (29)
converges uniformly to zero on — oo < # < <>o as ^ —• 1 —.

Now, let Jλ(x) denote the first term on the right-hand side of (29),
and assume that the support of φ is contained in the closed finite
interval [yl, JB]. For —oo < ^ — δ <, A, J,(x) = 0. On the other hand,
for A < x — δ < oo, we have that tcCyd(x) < Pecx, where P is a constant,
and therefore

I Jγ{x) I ^ Pecx Γ~δ I φ{k)(t) I ec(t-χ)e-c{t~x)G{ρ, t - x)dt .
JAA

^ P \ I φ{k)(t) I ectdt sup I e~c{t"x)G(ρf t - x) \ .

By Lemma 3, the right-hand side tends to zero uniformly on — oo < x < oo
a s p —•+1 — .

Thus, we have shown that I^x) tends to zero uniformly on
— oo < x < co. A similar argument demonstrates that I3(x) does the
same as ^ — + 1 - - . Altogether then, we have proven that

lim I N(x, p)\ ^ ε — oo < # < oo ,
p^i-

and, since ε is arbitrary, our lemma is proven.
We are finally ready to prove that (14) tends to (15) as p—>l —.

For any fixed nonnegative integer k, consider,

(30) *cCid{x)Dl Γ-^-T- ( K(z)(φ(t\ G(t + pz- x)ytdz - φ(x)\ .

Because φ e 2$, ζ,φ(t), G(t + pz — x)yt is a continuous functions of (z, x)
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for zeCp and — °o < # < oo, and an analytic function of x for every
zeCp. Consequently, we may interchange the differentiations with
respect to x with the integration on CP [4; p. 99], and then inter-
change it once again with the integration on t. Some integrations by
parts then show that (30) is equal to

* e , * ( s ) - ^ - ί K(zKφM(t), G(t + pz- x)ytdz - κc,d{x)φ{k){x) .

By using [1; Th. 6.1a, p. 226], this expression can be rewritten as

~x)dt

(31) Γ 1 f 1
+ ιcc,d{x)φ™{x) — i r - K(z) <1, G(t pz - x)tdz - 1 .

L 2πι }cp J

By virtue of Lemmas 2 and 4, (31) tends uniformly to zero on
-co < x < co as jθ—>1 —. Hence, the testing function in (14) truly
converges in Sfc^ to φ(x), and our proof of Theorem 2 is complete.

This theorem can be proved even without using Lemma 2.
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