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Let X be a compact Hausdorff space and let S be a point
separating collection of R+-valued lower semicontinuous fune-
tions on X which is closed under addition, Assume that S is a
lower semi-lattice with respect to the partial order =< (where
f=gif g=f+ h, for some hcS). Further, assume S con-
tains all the nonnegative constant functions 1 and is such that
2= f implies 1 = f (where 1< f if 2= flz) for all zeX).
Then, the Silov boundary of S is precisely {z | (f A g) () = min
{f(x), g(x} Vf, ge S} if, in addition, for all f,g, and heS we
have f+ (g A R)=(f+g) A+ k).

This theorem' extends a result due to H. Bauer [1]. He showed
that if HES C(X, R) is a linear subspace which contains the constant
functions, separates the points of X, and is a lattice with respect to
the partial order <, then the Silov boundary of H is precisely {a|
(f A g¥x) = min {f(x), g(x)} Vf,9e H}. This result can be obtained
from the above theorem by applying it to the semigroup H* of non-
negative functions in H.

The analogous theorem for upper semi-lattices is false. If, how-
ever, S is a lattice with respect to =< which satisfies the hypotheses
of the theorem, then oS & {x|(f V g)(®) = max {f(x), g(x)} vf,ge S}
and this inclusion can be proper.

2. Basic assumptions. Let X be a compact Hausdorff space
and let S be a set of R+*— valued lower semicontinuous functions on
X which is closed under addition and separates the points of X. A
closed set B&S X is called a boundary for S if each function in S
attains its minimum on B. Bauer [1] has shown that there exists a
boundary, denoted by aS and called the Silov boundary of S, which
is a subset of every boundary.

Two partial orders < and =< can be defined on S which are
compatible with addition. Set f < g if f(z) < g(») for all xe€ X and
set f=Zg¢gif g=f+ h, for some heS. Then, clearly, f < g implies
f=uy.

Assume that S is a lower semi-lattice with respect to < (i.e. if

f and g are in S their meet f A g exists in S). Let A = {xe X| VS,

! The author wishes to thank the referee for extending this theorem from
continuous functions to lower semicontinuous functions, the crucial step being the
arguement for Proposition 1, and for shortening the arguement of Proposition 2.
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g8, (f A g)(x) = min {f(z), g(x)}}. Then, as the following, examples
show, not much can be said about the relationship of A and 4S.

ExampLE 1 (due to E.J. Barbeau). Let X, ={1,2,3} and let S,
be the set of positive real-valued functions f on X with f(1) < 1/2
(f(2) + f(3)). Then S is a point separating subcone of C(X, R) which
contains the constants and is a lattice with respect to the partial
order =. In fact, for f,geS, (fV 9)(i) = max {f(2), 9(2)}, (f A 9)
() = min {f(7), 9} if 7 =2 or 3, and (f A 9)(1) = 1/2[(f N 9)(2) +
(f A 9)3)]. The set A =1{2,3} and 48, = X,.

ExampLE 2. Let X, = {4, 5} and let S, be the set of positive real-
valued functions for X with f(4) < f(5). Then 4S, = {4} and A = X,.

ExamPLE 3. Let X = X, U X, and let S be the set of functions
f with f| X;e8;. Then A ={2,3,4,5} and ¢S = {1, 2, 3, 4}.

Assume now that S is a lower semi-lattice with respect to X,
Define A, as before, to be {z|(f A g)(x) = min {f(x), g(x)} Vf, g S},
where f A g now denotes meet with respect to =,

LEMMA. A is closed.

Proof. If xz,¢ A then, for some f and g < S, there is » > 0 with
min (f, 9)(@) > X > (f A g)x). Set fi=f AN and g, = g AN Then,
since fi A g. = (f A g) A\, one of the inequalities min (f, M)(x,) =1,
(o), min (g, M)(x) = gu(x,), and min (f, g} X) = (f; A 9.)(x,) is striet.

Consequently, if x,¢ A there exist f, g€ .S with ¢ real-valued on
X and min (f, 9)(x)) > (f A 9)@). Now f=fAg+h and g=fA
g+ k, so min (f,9)=fA g+ min (h, k). Since min (h, k)(zx,) > 0,
min (k, k) is lower semi-continuous, and g is real-valued, a neighbour-
hood of z, is disjoint from A.

ProrOSITION 1. Let z,¢ A and let U be an open neighbourhood
of z,. If S contains all the nonnegative constant functions there
exist € > 0 and feS with (1) f(z,) = 0 and (2) {z | flx) < <= U.

Proof®. Assume the proposition to be false. Then as fe S,
with f(x,) = 0, and € > 0 vary, the closed sets of the form {x ¢ U| f(x)
> ¢} define a filter base. Hence there is a point «,¢ U such that
if fe8S and f(z,) = 0, then f(a,) = 0.

For ge S if A = g(x,) < + <o, then (g A N)(z,) = A. Now there

2 This arguement, based on a technique of Loeb and Walsh in [3] is due to the
referee.
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exist functions A and ke S with g AN+ h=¢g and g AN+ Ek =\,
Since h(z,) = k(x;) = 0 it follows that g(x) = (g A M)(z) = N = g(2,).
If g(x)) = + o, then n = (9 A n)(®) = (9 A #)(®) = g(»,) and so g(=,)
=~ + co, This contradicts the fact that S separates points.

COROLLARY. If S is a lower semi-lattice with respect to =< which
contains all the nonnegative constant functions, then ASoS.

3, The main theorem. From now on S is assumed to have the
following properties:

(a) S contains all the nonnegative constant functions .

(b) M < f implies » < f; and

(¢) forall f,g,hesS, f+@AR =49 N+ h).

ProrosITION 2. Let IS S be maximal with respect to the follow-
ing properties:

(1) figel=f+ygel

2) g=fand fel=gel

3) lel.
Then there is a point z,€ A with I = {fe S| f(z,) = 0}.

Assuming this proposition the main theorem of this note is quickly
proved.

THEOREM. Let X be compact Hausdorff and let S be a point-
separating collection of lower semi-continuous functions f: X — [0, +
o], Assume that S 1is closed under addition and is a lower semi-
lattice with respect to the partial order = (where f=<g9 if g =f-+
h, for some heS.)

The Silov boundary of S coincides with A = {x|vf,ge S, (fAg)(x)
= min {f(x), g(x)}} ©f S satisfies properties (a), (b) and (c).

In particular this is the case if S satisfies (a), (b) and the
cancellation law.

Proof. Since A is a closed subset of oS it suffices to show that
each fe S with finite minimum « attains aon A. Let M = {x(f(x) =
«}. Then, since f A a = «a there exists a function he S with f=
« + h which vanishes on M. Let I, be the set of functions in S
which vanish on M. Then I, satisfies conditions (1), (2) and (3) of
Proposition 2. Since I, can be embeded in a set < S maximal with
respect to these properties, it follows from Proposition 2 that M N
A+ g,

ExampLE 4. Let X ={1,2,3} and let S be the semigroup of
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positive real-valued functions f with f(1) < f(2) and 3/4 f(2) — 1/4 £(1)
> f(8). Then S satisfies all the hypotheses of the theorem except
(b). Here A = {1} and 0S = {1, 3}.

4. Proof of proposition 2. Let B ={x|fel= f(x) = 0}.
Then, since I satisfies (1), (2) and (3), B %+ @ and furthermore, if
0 =K< ¢ B is compact there exists Ael with mingsz > 0. The
maximality of I implies that if 2 .S vanishes at a point of B, then
hel.

Define +4: S— R* by setting +(f) = mingf. Then + has the
following properties:

(1) ¥(f) =sup {A|for some hel, N < f+ h}

(i) ¥(f)=0=rfel

(iii) P (f A () = ()

(iv) feS=Sf|B=+4()]|B.

(i) Let » <¥(f). Then K = {z|f(z) <A} is compact and dis-
joint from B, If K -+ ¢, there exists h eI with mingh = X and so \
<f+h. IINZ S+ B then N < (f) as h vanishes on B.

(ii) Clear.

(iii) v (f A ¥(f)) < ¥(f) anyway. Let N < (f) and let hel
with v < f+ h. Now M Z (f) + # implies by (¢) that M < f A ¥(f)
+ &k and so N Z Y (f A ().

(iv) Assume (f) < + o as it is trivial if ¥(f) = + . Then
f=FAP(f)+ g for some geS. Now (f) = v(f A ¥(f)) + v(g9) =
() + ¥(g) and so ¥(g) = 0. Consequently, /| B= f A +(f)| B and hence
f1B=(f)]B.

Property (iv) implies that B = {z,} for some z,¢ X. It remains
to show that z,€¢A. Let f,¢9e8 and let » = f(x,)) A g(z,). If A
(f N\ 9)(x,) then N = (f A g)(x,) and so z,€ A.

Let @« < Ax. Then there exist functions » and % in I with a <
f+hand a <g+ k. Property (c) implies that a < a + (b A k) =
(@+MN@+k)=(+h+E)N@+h+E)=(fAg)+ (h+ k). Hence,
a = y(f A g)= (N 9)xo).

REMARKS. This arguement, due to the referee, is a shortened
version of an argument of the author which showed that A could be
identified with the additive functions +: S — R* that preserve finite
meets and for which (\) = A\ if A is a constant. (c.f. Bauer [1]).

5. Upper semi-lattices., Examples 1, 2 and 3 show that when
S is an upper semi-lattice with respeet to < there is no particular
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relationship between dS and B = {&|(fV ¢)(x) = max {f(), g(x)} V[,
geSh

Assume that S is an upper semi-lattice with respect to <. Then,
if S is also a lower semi-lattice with respect to < and if S satisfies
the hypotheses of the theorem, 6S = B whenever the identity f+ g =
FV g+ fAg holds for all f,geS (for example, this is the case if
fH@Vh=U+9)V{+h for all f,gheS). However, as the
following example shows, dS can be distinct from B.

ExAaMPLE 5. Let X = {1, 2} and let S be the set of nonnegative
functions f with f(1) finite and f(1) = f(2) or f(2) = + . Then S
is a lower semi-lattice. Here 6S = A = {1}, However, B = X since
for f,geS max (f,9) = fV g.

If S is an upper semi-lattice but not a lattice with respect to =<
then B can be a proper subset of 0S as shown by the next example.

ExampLe 6. Let X = {1, 2, 3} and let S be the set of nonnegative
real-valued functions f with f(3) = 4/3 f(2)—1/3 f(1). Then S contains
the nonnegative constant functions » and X < f implies X <X f. S is
an upper semi-lattice.

Here, B = {1, 2} and 0S = X. Consequently, S is not a lower
semi-lattice with respect to <. For example, there is no function in
S which is the meet of f=(1,1,1) and g = (1, 1/4, 1/2).

Putting Examples 5 and 6 together, as was done before to obtain
Example 3 from Examples 1 and 2, we see that for upper semi-lattices
S, even those which satisfy hypotheses analogous to those of the
theorem on lower semi-lattices, there is no particular relationship
between 0S and B.

6. The case of a vector space. Let X be compact and let
H< C(X, R) be a point-separating set of continuous functions f: X — R
which is a lattice with respect to the partial order f < g if f(2) <
g(x) for all xe X. Assume that H has the following properties:

(1) if fe H, then R(f) = {x || f(x)]| < + <} is dense;

(2) if f,9< H there is a function h € H with h(z) = f(z) + g(z),
for 2 € R(f) N R(g);

(8) if fe H and € R there is a function ke H with k(x) =
Mf(x) for x e R(f); and

(4) H contains the constant functions.

These properties imply that H is a vector lattice. Denote by S
the positive cone H* of H. Then S is an additive semigroup with
cancellation which is a lattice with respect to the partial order f< g
if g = f+ h, for some heS. Clearly, the hypotheses of the theorem
are satisfied by S, and so the Silov boundary of S is the set of points
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in X such that (f A ¢)(x) = min {f(), g(x)} for all f,geS. Since
f+9=FfANg+ fAg, this is the set of points at which the lattice
operations hold pointwise.

Denote by H* the set {fc H| for some n,n = | f|}. Then H* is
the subvector lattice of H consisting of bounded functions.

If B X is closed, it will be called a boundary for H* if (1)
each function in H* attains its maximum on B, and (2) if € B and
f(z) = fly), for all fe H*, then ye B. It is well known that H* has
a unique minimal boundary if H* separates the points of X (c.f. [1]).
By passing to an identification space Y of X and taking inverse images
of sets in Y, it then follows that H* has a unique minimal boundary

in X. This set will be called the Silov boundary of H*.

PROPOSITION 3. The Silov boundary of H* is the Silov boundary
of H*,

Proof. Let A denote the Silov boundary of H*. Then, A4 is a

boundary for H*,
It is clear that each function in H* attains its maximum on A.

It remains to show that if x e A and f(x) = f(y), for all fe H*, then

ye A,
Assume x€ A and y # x. Then, since f = f+ — f~ there exists

fe Ht with either M = f(x) > fly) = 0 or » = f(w) < f(ly) = 0. In the
first case let ¢ = f A\ and in the second case let ¢ = f\/ A. Then,
since x € A4, g(x) = N and g(y) < fly) or g(y) = f(y). Hence, in either
case, g(x) = g(y). Since g e H*, it follows that A is a boundary for

The Silov boundary A of H~ is the set of points in X at which
the lattice operations hold pointwise. Since H* | A separates the points
of A it is dense in C(4, R). Hence, A is the Silov boundary for H*,

ExampPLE 1. Let H be the vector lattice of differences of positive
harmonic functions on some open set 2 S R". Let X be the compacti-
fication of 2 determined by H ([2] p. 97). Viewing H* as a cone of
functions on X, it follows that the Silov boundary of H- coincides
with the Silov boundary of H*, which in this case consists of the
bounded harmonic functions on 2. Further, if H,* denotes the func-
tions on Q. Further, if H,* denotes the functions f in H+ with f A
1 0, the Silov boundary of H+ coincides with that of H~.
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