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The primary purpose of this paper is to establish some
implications between normality and pointwise paracompactness
in Moore spaces. In particular, it is proved that if either of
two conjectures, raised by R. W. Heath and E. E. Grace, is
true then each normal Moore space is indeed metrizable,

In {4], Heath and Grace raised questions regarding the substitu-
tion of normality for the condition of pointwise paracompactness in
several of the theorems proved in that paper. The resulting state-
ments appear below as Conjecture A and Conjecture B. The purpose
of this note is to establish that the truth of either of the conjectures
implies that each normal separable Moore space is metrizable. Thus,
if either Conjecture A or Conjecture B is proved true then the condi-
tion that 2% < 2% would be removed from Jones’ result |8, Th. 5] on
the metrization of normal separable Moore spaces.

For definitions and results related to the question of metrization
of normal Moore spaces, refer to [1],][2},[5],16], [7], [8], [9], [10],
{11}, {13], [14].

CONJECTURE A. Suppose that S is a connected normal Moore space
such that S contains no cut points and it is true that if each of P
and @ is a point of S and R is a region containing P then some
separable, closed connected subset N of R separates P from @ in S.
Then S is separable.

CONJECTURE B. Suppose that S is a connected, locally connected,
normal Moore space containing a separable closed set which separates
S and each separable closed set which separates S contains two points
which are separated by a separable closed set. Then S is separable,

THEOREM 1. If Conjecture A 1is true then each mormal separable
Moore space is metrizable.

Proof. Suppose that the theorem is false and that (S, 2) is a
normal separable nonmetrizable Moore space. There exist |8, Lemma
C], in S, an uncountable set M with no limit point and a countable
dense set K of S — M such that each point of M is a limit point of
K. The subspace K + M, with the relative topology, is normal,
separable, nonmetrizable and a Moore space. If (S,, 2,) denotes the
subspace K + M of (S, 2), denote by (S,, 2,) the space whose topology
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is precisely that of (S, 2,) of [2, Th. 2]. For purposes of clarity,
this definition is included below:

Enumerate K: A, A,, A;---. For each point x of M denote by
{n:(xz)}z, an increasing sequence of positive integers such that limit,_.,
A, (r) = x, according to the topology £,. Now consider the space
(S, 2,), where Q, is the topology induced by the following definition
of region:

The point set R is a region if and only if either (1) for some
point P of K, R is the degenerate set whose only element is P, or (2)
some point & of M and some positive integer 4, R is the set to which
P belongs if and only if P =2 or P = A,;(x) for some j greater than
or equal to 7.

Using the method employed in [12, Th. 3] (that of inserting copies
of open intervals of the real line between “adjacent” points of K which
are points of a region containing a point of M) it is seen that it is
possible to embed (S, 2,) in a space (S,, 2;) which is normal, separable,
nonmetrizable, arcwise connected, and locally arewise connected. Indeed,
(using precisely the notation of [2, Th. 2]), if A4, is a point of K, at
most finitely many intervals “connect” A; to points of K having sub-
seripts less than 4, and at most countably many intervals “connect”
A, to points of K having subsecripts greater than <.

Now, denote by Z a space with discrete topology such that

Z = M and Z does not intersect S,. There is a reversible transforma-
tion T which throws Z onto M.

Consider the topological product space, Z x [0,1). It follows that
T induces a reversible transformation 7" from Z x {0} onto M such
that if m is a point of M then there exists a point z of Z such that
T4z, 0) = m, where (z,0) is a point of 2z x [0,1). This essentially
attaches mutually exclusive segments to the points of M.

Denote by (S, 2,) the space in which “point” means point of S,
or point of 2z x [0,1) for some z of Z and in which @, is the topology
induced by the following definition of region:

The point set R is a region if and only if either.

(i) there is a region g of 2, such that g contains no point of
M and g = R, or

(ii) there is a region g of 2, such that ¢ contains a point of M,
say m, and R is the set to which x belongs if and only if « is a point
of g or, for some positive integer n and some point z of A such that
T'(z,0) = m, x is a point of z x [0, 1/n), or

(ili) there are a point z of Z and a positive integer n such that
R is a subsegment of z x (0,1) of length less than 1/n.

It follows that (S;, 2,) is a normal, nonmetrizable, arcwise con-
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nected Moore space which contains uncountably many mutually exclu-
sive domains.

Now denote by (S,, 2,) the space which is the topological product
space resulting from (S,, 2,) being crossed with (0,1). It follows from
Dowker’s result [3, Th. 2] that each normal Moore space is countably
paracompact. Dowker also proved [3, Th. 4] that if X is countably
paracompact and normal then the topological prodoct X x Iof X with
the closed line interval I = [0, 1] is normal. Since the product of a
normal Moore space with the interval [0, 1] is again a normal Moore
space and each such space is completely normal [8, Th. 6], it is evident
that (S,, 2,) is normal. Indeed, (S,, 2,) is an arcwise connected, locally
arcwise connected Moore space which contains no cut points and is
such that if each of x and y is a point of S, and R is an open set
containing x then there is a closed, connected, separable subset N of
R such that N separates o from y in S. However, (S,, 2;) is definitely
not separable since its construction insists upon the existence of
uncountably many mutually exclusive domains.

THEOREM 2. If Conjecture B is true then each mormal separable
Moore space is metrizable.

Proof. The example constructed in the proof of Theorem 1 would
deny Conjecture B.
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