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Let V be an arbitrary Riemannian w-space, and VΊ a regular
neighborhood of its ideal boundary. Given a harmonic field
a in Vu necessary and sufficient conditions are known for the
existence in V of a harmonic field p which imitates the behavior

of o in Vi in the sense \ (p — a) Λ * (p — a) < oo. In the pre-

sent paper we give the solution of the corresponding pro-
blem for harmonic forms in locally flat spaces.

One aspect of our treatment which may have possibilities for
generalization is the use of the point norm defined by | φ |2 = φiv..i φ*1'"1*.
Another approach to generalizations is discussed in [3].

1* Throughout our presentation the symbol V shall stand for a
locally flat Riemannian space. Since the curvature tensor vanishes
in V, there exists a covering {Ua\aeV} of V such that Ua is the
carrier of local coordinates xa = (xι

a, •••, xl) with xa(a) = 0 and

I x a I - V I %ί I" + + I xl Γ ^ ra (0<ra< oo)

in Ua with the following property:

( 1 ) 9M = δu (xΛeUa).

We moreover require that V is parallel in the sense that the above
{Ua} can be chosed so as to satisfy

(2) xi = xl + cU (i = 1, . . . , n )

in Uaf] Ub with constants c\h. We call (Ua\ae V) a parallel coor-
dinate covering and each Ua a distinguished coordinate neighborhood.

2. The space of harmonic p-forms φ, defined by dδφ + δdφ = 0,
will be denoted by Hp. For a set E c V, the notation φ e HP{E) shall
mean that φ is a harmonic p-form in an open set containing E.

Let Fi be the complement in V of a regular subregion [4] of V.
Suppose a e HV{VX) is given. The problem is to construct a correspond-
ing peHp(V), to be called the principal form, characterized by the
existence of a constant M such that

(3) \p — σ\ < M < co
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on V1#

The space V is called hyperbolic or parabolic according as it does
or does not possess Green's functions [4].

THEOREM 1. If V is hyperbolic, then the principal form p always
exists.

THEOREM 2. // V is parabolic, then a necessary and sufficient
condition for the existence of a principal form p is that

(4) [ *d < σ,c > = 0

iβ

for every constant form c. The principal form is unique up to an

additive constant form.

Here ζφ, ψy = φiγ..,i ψiίv"ip, and β stands for the ideal boundary
of V. For constant forms see No. 4 below.

The above theorems will be consequences of the main existence
theorem for harmonic forms (No. 7), which we shall first establish.

Theorem 1 is known to be valid without the assumption that V is
parallel ([3])

3. Take a p-form φ on V:

ψ = aψi^ijdxi1 Λ Λ dxi* .

In Uaf] Ub, dx\ — dx\ and therefore

For this reason there exists a global function φ^.i in V such that

in Ua. Conversely, given functions φiv..ip, there exists a p-ίorm

φ = aP^.-i/xi1 Λ Λ dx*ap with φiv..ip = a<Piv~ip in each Ua.

4* We call φ a constant p-form if

( 5 ) Δφ = 0 ,

( 6 ) I φ\ = const.,

and we denote by Kp the class of constant p-forms. It is easy to see
that

dφ = 0, δφ — 0
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for φeKp,ue., constant forms are harmonic fields. If <peHp(V) and
φ I is constant in some open set Da V, than φ e KP{V). In fact, let

φ = φiι...ipdχiι A Λ dx** .

Then Δφ — {Δψi^.^dx^ Λ Λ das** — 0, and we see that each φil...i

is harmonic. Consequently (φiι...ipf is subharmonic, and so is

= Σ
i

Since 19? |2 = c (const.) in D, we have

in 2λ The left-hand member is subharmonic and superharmonic and
the same is true of (φiv..ipy. But J(φiv..ipY = | grad φiv..i |2, and for
this reason φ%v..i must be constant.

Clearly Kp is an (n J -dimensional vector space.

5. Let L2' be the operator in the space of p-forms on ax ~ d V1 into
the space of continuous p-f orms in Vl9 harmonic in Vlt such that Lpφ \ai~φ
and

( 7) Lp(\φι + μφt) -

(8) \L*φ\ ^

( 9 ) 1 * d < LP9>> c > = 0 for every c e Kp .

We call Lv a normal operator.
A normal operator L for 0-forms induces one for p-f orms:

L*φ = (Lφh...ip)dx^ Λ Λ da?** .

More interesting is the following. Let iv..i L be normal operators for
0-forms, with it < < ip. We define one for p-f orms by setting

Lp = h...ipLdx^ Λ Λ

that is

? H ^ ^ V ^ ^ 1 Λ Λ ώ̂ i> .

In particular, if iv..ipL = Lo or Lx for all iγ < < ίp, we denote
the corresponding Lp by Lf or Lf.

6. Given a compact set E in V let J^J c Jϊ2' be the class of
harmonic p-f orms f in F such that <(<p, <?)> is not of constant sign in
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E except for being identically zero for every c e Kp. Observe that FE is
closed with respect to uniform convergence in terms of | | on compact
sets. In fact,

I <?>», C> - <ςpw, C> I = \ζφn - φm1 C> I ̂  I C I I φn - φm \ .

We shall need the following generalization of the g-lemma for
0-forms [4]:

LEMMA. There exists a constant qE (0 < qE < 1) such that

max £ I φ I ^ qE supF | φ \

for all φ e FE.

We only have to consider forms φ with supF \φ\ — 1. Suppose
there existed a sequence with max# \φ,ϊl\/\. Then since {φ \ supF | φ \ — 1}
is a normal family, we would have φ = lim<pw with max£ \φ\ = 1.
By the subharmonicity of | φ |2, φ would be a constant form c on V.
The contradiction ζcp, c)> = ζg>, φy = 1 completes the proof.

7* With the scene so set for p ^ 0, we can state the following
generalization to p-forms of the main existence theorem known thus
far for 0-forms only [4]:

THEOREM 3. The principal form peHp(V) characterized by

(10) L(p-σ) = p-σ

exists if and only if

(11) f *d<V,c> =
jβ

0

for all ceKp. The principal form is unique up to an additive
constant form.

The proof is analogous to that for 0-forms [4] and we can restrict
ourselves to a brief outline.

Let V0(z V be a regular region with 3 Vo c V1 and d V1 c F β .
Denote by 1/ the Dirichlet operator for Vo. We only have to establish
the convergence of <p — Σn=o(LL')nσo, where σ0 = σ — Lσ and L = ZΛ

Observe that condition (11) means that l *d<σ, c> = 0 for every
ice

a homologous to al9 since ζσ, c> is a harmonic function. We conclude
that

( <L'(LL')nσ0,c>*dh = 0,
J3FI
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where h is the harmonic measure of dV0 in VQ Π F1# For this reason
L'(LL')nσoe Fp

Vl(V0), the lemma applies in Fo, and we have the con-
vergence.

Theorem 2 is a consequence of Theorem 3.

8. To prove Theorem 1 suppose V is hyperbolic. The form
σ e Hp(Vι) may or may not satisfy (11). We set

Λ Λ dx** ,

where σ = aii...ipdxil Λ Λ dx** is the global expression in Vx and
ω is the harmonic measure of the ideal boundary β of V with respect
to Vi. Clearly | ψ | is bounded in Vx. Consequently, σ = σ + ψ
satisfies (11) and the solution p satisfies

p — σ = Lp(ρ — σ) + ψ

on Vλ. We infer that | p — σ | is bounded in F x .
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