
Pacific Journal of
Mathematics

THE STRUCTURE SPACE OF A COMMUTATIVE LOCALLY
m-CONVEX ALGEBRA

ROBERT MORGAN BROOKS

Vol. 25, No. 3 November 1968



PACIFIC JOURNAL OF MATHEMATICS
Vol. 25, No. 3, 1968

THE STRUCTURE SPACE OF A COMMUTATIVE
LOCALLY M-CONVEX ALGEBRA

R. M. BROOKS

If A is a commutative Banach algebra with identity, then
the sets ^ f (all maximal ideals), .^C (all closed maximal
ideals), ^ ^ (kernels of nonzero C-valued homomorphismβ of
A), and ^/^ (kernels of nonzero continuous C-valued hom-
morphisms of A) coincide. If A is a commutative complete
locally m-convex algebra, one has only ~^C = -^o ^ ~^ί c -^C
and the containments can be proper. Our goal is to investi-
gate ^^and its relationship to ^ C ; specifically (1) to give
a description of ^f(A) in terms of A and ^^0(A) which is
valid for at least the class of F-algebras, (2) to determine
when ^/έ(A) is one of the standard compactifications (Wall-
man, Stone-Cech) of

For many locally m-convex algebras, especially algebras of func-
tions, one can determine ^gj. However, descriptions of ^ and its
relationship to ^ ^ seem to be limited to special cases; for example,
Hewitt's description of ^Y/{C(X)) [5] and Kakutani's description of
^y£ for the algebra of analytic functions in the unit disc [6]. We
show that a commutative complete locally m-convex algebra A gen-
erates a lattice Ji? on ^ J , and that if we impose a rather natural
restriction on A, then ^// is the space of ultraίilters of £>f. We
give necessary and sufficient conditions on A in order that (1) ^ is
the Wallman compactification of (^C, hull-kernel), (2) ^// is the
Wallman compactification of (^C, Gelfand). In the second case, we
show that ^ f — /3^€ί and obtain a correspondence between ^ ^ and
the A-realcompactification of ^//^

We then specialize to .F-algebras and show (1) F-algebras always
satisfy the condition imposed in the general situation, (2) ^/ί is the
Wallman compactification of (^Ό, hull-kernel), and (3) ^/S — /3^Ό,
whenever the algebra is regular.

1* The general case* A locally m-convex algebra (hereafter
LMC algebra) is a locally convex Hausdorff topological algebra A whose
topology is given by a family of pseudonorms (submultiplicative, con-
vex, symmetric functionals). For the basic properties of these algebras
the reader is referred to [1] or [9]. In this paper we shall restrict
our attention to complete algebras with identity element 1. If λ is
a complex number we shall write "λ" for "λ Γ\

The structure space of A is the set ^/ί of all maximal ideals of
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A, endowed with the hull-kernel (hk — ) topology. This space is always
compact and satisfies the T1 separation axiom. The spectrum of A
is the set ^Γo of all closed maximal ideals of A.

DEFINITION 1.1. If S g 4 , F g ^//,, G S ^f, xeA, then
( i ) H(S) =
(ϋ) h(S)
(iii) kF(=k(F)) = Γ\{Me Jfa: Me F} = {xe A:xeM for each

MeF}.
(iv) K(G) = Γ\{Me .y£\ MeG} = {xeAixeM for each Me F}.
(v) H(x) = H({x}),h(x) = h({x}).
The hull-kernel topology is defined in terms of the closure operator:

(1.1) CLr (F) = HK(F) ,

or

(1.2) CL, (F) - Π {fl(»): ^ S #(#)}, for each F g y / .

A simple computation yields

THEOREM 1.1. The closure operator on ^fQ which defines the
relative hull-kernel topology on ^ Ό is given by

(1.3) C\^Q

or

(1.4) CLr0 (F) = Γl Wα): ^ S Λ(«)}, for each F g y / 0 .

The spectrum can also be endowed with a second natural topology.
If Me ^^o, then Mis the kernel of a unique continuous homomorphism
of A onto C [9, p. 11]. We identify M and the corresponding homo-
morphism, denoting the value of the homomorphism at an element x
of A by M(x), and endow ^/f0 with the relative weak — (w* —) topology
from A*, the conjugate space of A. This topology is the weakest
such that all of the functions x: ^/^ —> C defined by x(M) = M(x) for
each xe A are continuous. We state without proof the basic proper-
ties of the mapping x-+x oί A into C(^^>) (cf [9, Props. 7.3, 8.1,
and 9.2] and [4, Ex. 7M]).

THEOREM 1.2. The mapping x —+ x is a homomorphism of A onto
a subalgebra A of C(^fQ) which contains the constant functions and
separates the points of ^f0. The kernel of this homomorphism is the
radical &(A) of A, and &{A) - f| {M: Me ^/t0} = f| {M: Me ^T} =
{x G A: (1 + ax) is regular (invertible) for each xe A) is a closed ideal
in A. Hence, ^/^ is dense in
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DEFINITION 1.2. A commutative LMC algebra A with identity is
called regular provided that for each w*-closed subset F on ^f0 and
each point M e ^/ZΌ — F there exists an element x of A such that
x(M) = 1 and x = 0 on F (equivalently, x e kF — M).

THEOREM 1.3. (Proposition II, p. 223 of Naimark [7]). The hull-
kernel topology on ^ is weaker than the w"-topology. They agree
if, and only if, A is regular.

DEFINITION 1.3. A commutative LMC algebra A with identity is
called w*-normal (respectively, hk-normal) provided that for each pair
Fl9 F2 of disjoint, w*-closed (respectively, M-closed) subsets of ^f0

there exists xe A such x = 0 on Fx and x = 1 on F2.
We note that if A is w*-normal, then A is regular, the two

topologies on ^C o agree and ^f0 is a normal space. If A is hk-
normal, we cannot conclude that ^^ with the M-topology is normal;
since, in general, the elements of A are not M-continuous.

If {xL, , xn) £ A, we write h(xί9 , xn) instead of h({x19 , xn})9

and denote the ideal in A generated by this family by (xl9 •• ,xn).
We note that h(x19 •••,»») = h((x19 , xn)) and that h(xl9 •••,»») =
Π {h(Xi): i = 1, , n} and H(xί9 , &•) = Π {H^): i = 1, . , n}.

THEOREM 1.4. The first three statements about the finite family
{xu , xn) £ A are equivalent. Each of these implies the fourth.

( i ) h{xu , xn) — φ implies (x19 , xn) — A.
(hH)(ii) h(xu , xn) — φ implies H(xly , xn) = φ.
(iii) H{x19 •••,««) = C l ^ h(xl9 , a?w).
(iv) C U h(xl9 •••,»») = Π {CU / φ ; ) : i = 1, , n}.

Proof, (i) if, and only if, (ii): ί ί ^ , •••,&») = 0 if, and only if,
(#!, •••,»») is not contained in any maximal ideal if, and only if,

(Xi9

 β j Xn) — Ά

(i) implies (iii):

C U fete, , xn) = Hk(h(xly , a?.)) = HK(h(x19 , a?n))

Suppose Λf g Hk(h(xly , α?%)). Then &&($!, , αn) + Λf = A and there
exist « e ^(a?!, , a?n), w e l such t h a t z + w = 1. Then Λ(z, ^ ) = ^
and /&(&i, , xn, w) = ί* (since ^(^i, •••,»»)£ λ(2)). By (i) we have
(xlf ' , xn9 w) — A and (w e M) at least one x{ £ M. Thus,

(iii) implies (ii): obvious.
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(iii) implies (iv): clear, since H(x19 -- ,xn) = Γϊϊ
We consider throughout the remainder of this section only algebras

which satisfy condition (hH) ((ii) of Theorem 1.4). We note the fol-
lowing formulation of (hH). If {a19 , αn} £ A we consider the equa-
tion Σ?=i aiχi = 1 a n ^ ask for condition on A which insure solvability
in A. (hH) is the assumption that the vacuousness of h(au * ,αw)
is sufficient. Arens [2] gave sufficient conditions in terms of the
solvability of certain related equations in Banach algebras. We shall
show below that in F-algebras the vacuousness of h(al9 , an) is
sufficient for the solvability of the equation in A.

THEOREM 1.5. Suppose Fx and F2 are disjoint subsets of ^/^.
The following statements are equivalent.

( i ) CLr *\ Γl CLr F, = 0.
( i i ) There exists xeA such that x = 0 on Flf x — 1 on F2.

(iii) kFx + kF2 = A.

Proof, (i) if, and only if, (iii): CU F, = HkFif i = 1,2, and
HkFι n HkF2 = H(kF1 + kF2). The equivalence follows (kF is always
a closed ideal in A for F £ ^Ό)

(ii) if, and only if, (iii): If (iii) kFx + kF2 = A we choose x e kFu

y e kF2 such that x + y = 1. Then » = 0 on Fx and x = 1 on i^2.
The converse is immediate.

COROLLARY 1.5. Disjoint w*-closed (respectively, hk-closed) sub-
sets of ^//Q have disjoint closures in ^ if, and only if,Aisw*~
normal (respectively, hk-normal).

We now give our description of ^f, assuming A satisfies (hH).
The result is stated in terms of a lattice compactification of ^y/^.
The basic facts about these compactifications may be found in [12]
and [13], and in the form used here in [3].

DEFINITION 1.4. A lattice £^ (with respect to (J and n) of sub-
sets of ^//^ is called an a-lattice provided that for each B e =Sf and
Me ^f0 — B there exists De^f such that Me D, B Π D = <ρ. &> is
called a β-lattice provided that for each pair Mu M2 of distinct points
of ^ o there exists Be^f such that Mx eB,M2e ^f0 - B. ^ is
said to be normal provided that for each pair B, D of disjoint mem-
bers of J^f there exists a pair Bu Dx of elements of £f such that
B £ Bu D £ A, B Π A = φ = Bx n I>, and A U A belongs to every
ultrafilter in ^ ^ (in the presence of (a), this is equivalent to the
statement that Bγ U A = *^O).

s the set of all ultrafilters in £f. For each



THE STRUCTURE SPACE OF A COMMUTATIVE LOCALLY 447

Ee £f we define C(E) = {^ € w ^ : Ee<%s} and define a topology on
wi?7 by taking the family {C(E):Ee^f} as a base for the closed
sets (E—>C(E) is a lattice homomorphism of £f into the power set
of w^f). The space wSf is always compact and satisfies the 2\
separation axiom. The assumption that Sf is an <x-lattice is equivalent
to assuming that for each Jlfe j ^ the family <%su = {Ee£f:MeE}
is an ultrafilter in Jίf. If J5P is an α-lattice then the function
φ: ^fo —• w.Sf7 defined by <p(M) — ̂ M maps ^Co onto a dense subspace
of w£f. If -S^ is an α-lattice, then (β) is equivalent to the state-
ment that φ is one-to-one. Normality of £f is equivalent to the
statement that w^f is Hausdorff. If we fix a topology ^~ on ^/^
then 9? is continuous (assuming (a)) if, and only if, each element of
JZf is ^^closed, and φ is a homeomorphism if, and only if, such ele-
ment of Sf is ^"-closed, £fis a /3-lattice, and JZf forms a base for
the .^closed subsets of ^C». (For proofs, see Theorems 2.5 and 2.7
of [3]). Finally, if Ee^f, then (<pE)~ (the closure in w£? will be
denoted by "~") = C(E), and for any subset F of ^To, (φF)~ =
Π {C(il): f g i } (Theorem 2.6 of [3]).

LEMMA 1.6. The family £f = {h(xu , a?u): {a?x, , a?J £ -4} is
α^ a —, β-lattice of hk-closed subsets of ^fQ which forms a base for
the hk-closed sets. Thus, the mapping φ(M—* %fM) is a homeomorphism
of {^€Q, hk) onto a dense subspace of

Proof. The family £f is closed under finite intersections, since
h(xu , xn) = Π?=t Hχi> ''' i χn) for each finite family {xu •••,»»} in
A. Moreover, h(xlf , xn) U h(ylf , yn) = Γ\ {h(XiVi): i = 1, , n;
j = 1, « ,m}, the latter being an element of £f. Thus, . ^ is a
lattice on ^#Ό consisting of M-closed sets which forms a base for the
hk-closed sets of ^Γo.

If If G _^r0 - h(xl9 , a?Λ), then (^, , xn) + M = 4̂. and there
exists 2 G l such that 2 = 1 on /φ^, , χn). But this implies
Me h(z) and h(z) f] h(xu , xn) = ^. Thus, ^ is an ^-lattice. That
^ is an /3-lattice is immediate.

We note that in general £f is not a normal lattice. For example,
if A is the algebra of all functions on the open unit disc D to the
complex plane which are analytic on D, then ^ # 0 and D are in a
natural one-to-one correspondence. In this case, £f is the lattice of
all discrete subsets of D plus the set D itself. It is clear that Stf
is not normal.

THEOREM 1.6. Λ€ is wSf (i.e., there exists a homeomorphism
σ of ^/έ onto wSf such that σ(M) = φ(M) for each
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Proof. For each M e ̂  we let σ(M) be the subfamily of <g>
consisting of all Ee^f such that MeCl^E. It is clear that σ(M)
is a filter in £f% We use the criterion "A filter ^ in ^ is an
ultrafilter if, and only if, for each EeS^ — ά?" there exists f e ^
such that Ef)F=ψ" ([12, p. 105]) to establish that σ(M) is an
ultrafilter. If Ee £? — σ(M), then E = h(x19 •••,#») for some family
{xl9 •••,#»} in A. and Mi CL, &(&!, •••,#„) = H(xlf , a?w). We have
{M} = f| {-ff(2/i, , 2/ ): MeH(yu , #w)} and this family is a descend-
ing family of compact sets of ^€ whose intersection is contained in the
open set ^ — H(xl9 , xn). Thus, there exists a family {y19 , ym}
in A such that M e H(y19 , ym) S ^ - fli^, , αΛ). But then
Ml/i> ' y Vm) e ^(Λί) and is disjoint from h(x19 •••,»»).

If ^ is an ultrafilter in £f, we let ^ * = {Cl^ j&: ̂ e ^ } . Then,
^ * is a descending family of compact subsets of ^t and has a
nonempty intersection. It is easily verified that there is a unique
element M of in Γ ) ^ * and that σ(M) = ^ . It follows that the
mapping σ is one-to-one, onto, and that for each Me ^ 0 σ(M) = %fM =
φ(M). The equality σ[H(xl9 , xn)] = C[h(xί9 , a?w)] for each finite
family {xu « ,ίcw} in A yields the fact that a is a homeomorphism.

We state without proof the following theorem on lattice com-
pactifications (cf. [3, Th. 3.1]).

THEOREM 1.7. If ^ff is a second a-lattice on ^//fQi ^ £ j*?'9
and ψ is the mapping of ^/^ into wj^', then the following statements
are equivalent.

( i ) If Fu F2 e £?', then FιΠFi = φ if, and only if, (φFJ- Π
(φF2y = φ.

(ii) If Fl9 F2 G £f>, then φ(F, Π Ft)~ = (φFJ- Π (φFt)~.
(iii) wJzf' — w£? (i.e., there exists a homeomorphism τ of

onto w^f such that τφ(M) — ψ(M) for each

We apply this theorem to our situation. We identity ^£ and
here and let ^(hk) and ^(w*) denote the lattices of all hk-

closed subsets of ^fQ and all w*-closed subsets of ^//^, respectively.
W(^^Q9 J7~) denotes the Wallman compactification of the topological
space ( ^

COROLLARY 1.7. ^£ = W(^09 hk) if, and only if, A is hk-
normal. If A is regular, then {^f0, w*) is embedded homeomorphi-
cally in ^f and ^f = W(^fOj w*) if, and only if, A is normal.
In this case, Λ? is Hausdorff and ̂ /S

Proof. The first statement is clear in view of Theorem 1.7 and
Corollary 1.5, where we let j*?' = ^(hk). The second statement
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follows from the same two theorems, where Sf* — ̂ (w*). Finally,
if A is normal, then ^ J is a normal space and W(^fQ) (we suppress
J7~ since the topologies agree) is Hausdorff [13, p. 119], hence ΛP =
W(ΛΌ) = β^0 (cf. [7, Exercises 5P and 5R] or [3, Th. 3.2]).

EXAMPLE 1.1. We give an example to show first that in general
a commutative LMC algebra can be completely regular, but not normal
(the concepts are equivalent for F-algebras, see § 2), and secondly that
Λϋ' may be β^/^ while A is not normal. We let Ω be the first un-
countable ordinal and w the first ordinal with countably many prode-
cessors, Ωf is the set of all ordinals up to and including Ω, wf the set
of all ordinals up to and including w,T' = Ω'xw' with the product
topology (each of Ω'', wf being endowed with the order topology), and
T = T' — {(£?, w)}. T is a locally compact Hausdorff space which is
not normal and βT = T (cf. [4, pp. 123-124]). We let A = C(T)
with the compact-open topology. Then (^f0, w*) = T, w* = hk on T
and ΛS = βT = T. But A is not normal.

We next consider for a normal algebra A satisfying the condition
(hH) the problem of identifying the subspace of ^f which consists
of the maximal ideals of A which are kernels of (possibly discontinu-
ous) homomorphisms of A onto C. We denote this subspace by ^ x .

Since A is normal, ^€ = β^* and for each x e A the function
x on ^zfQ is a continuous mapping of ^f0 into the one-point compacti-
fication C* = C U {°°} of C. Thus x has an extension #*, a C*-valued
continuous function on wj^f?( = β^fQ). Discussions of this extension
and of the realcompactification of a space are found in Chapters 7
and 8 of [4]. The realcompactification of ^f09 υ^f0, is the subspace
of β^'/ίΌ consisting of all 5^ e β^f0 such that for each z e C(^/f0)
5^€2*-"1(Cf), i.e. z* does not take on the value oo at 5̂ 7 where z* is
the extension of the mapping z: ^fo—>C* to /3^Γ0.

DEFINITION 1.5. υA^f0 (the A-realcompactification of
e w^f: x*(%/) e C for each x e A}.

THEOREM 1.8. // ^eυA^f0 and <& = σ(M), then M={xeA:
= 0}.

Proo. If Me^/f and σ{M) = <%/ e oA^0, then the set 1 =
{xeA:x*(^/) = 0} is an ideal in A. Moreover, if xeM, then
%SeC[h(x)] = λ(ίc)-" and since £* is continuous on w^ and agrees
with ί on ^ o , x*(^) = 0. Therefore, M S / and / ^ -A(l ί /). Hence,
Λf = /.

THEOREM 1.9. T&e restriction of the mapping σ:
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^//γ, is a homeomorphίsm of ^//γ onto υΛ^/^Q.

Proof. If <%s e υΛ^/fo and <2S = σ{M), then the mapping
is a homomorphism of A onto C with kernel M and J l ί e ^ / i .

If l e . / i and <?/ — σ(M), then for each xeA there exists
λ G C(λ = M(x)) such that # — λ G M. We fix x G A and the corre-
sponding (unique) XeC. If x — λ G ikf, then M e H(x — X) and
^ G C[/φ - λ)l. This implies (x - X) *(<?/) = 0. Since
λG C, we have x*(<%f) = [(x - X) + λ ] * ( ^ ) = (.τ —λ)*(^") -f
λ G C and ^ G ̂ ^ /^0.

We wish to acknowledge here our indebtedness to Donald L. Plank of
the Case Western Reserve University who communciated to the author
theorems analogous to 1.8 and 1.9 for a real algebra A of functions
on a completely regular space X satisfying: BC(X) S A £Ξ C(X), where
BC(X) is the algebra of all bounded real-valued functions on X to R.

2. A special case* We consider in this section the special case:
A is a commutative i^-algebra with identity 1 — a complete LMG
algebra whose topology is given by a countably family of pseudonorms.
In this case we can assume that the family {pn}ζ=0 satisfies: pn(x) ^
Pn+ίix) for each n ^ 0 and each xeA. The fact the i^-algebras are
inverse limits of Banach algebras is important for our purposes. We
let Nk = {x G A: pk(x) = 0}, Πk the natural map of A onto A/Nk and
Ak the completion of A/Nk with respect to the norm defined by
II Πkx || = pk(x). Each An is a commutative Banach algebra with
identity. For each n ^ 0 there is a norm-decreasing homomorphism
/7;+1 of An+1 onto a dense subalgebra of An which is defined on A/Nn+1

by Πl+1(Πn+1x) = /7nίc and extended to An+1. For n ^ m, /ZJ: Am —> Aw

is defined by the obvious composition. The resulting family of alge-
bras and homomorphisms is an inverse limit system and A is isomorphic
and pseudo-isometric to the inverse limit of this system. An important
consequence of this is the following fact. If {ςn}ζ=Q is a sequence
where ξn e An and Π™ζm = ξn whenever n ^ m, then there exists xeA
such that Πnx — ζn for each n ^ 0. For details of this construction
and the basic facts about such systems, the reader is referred to [9],

We state without proof two theorems, the first is just Theorem
4.2 of [2] in our terminology, the second is immediate.

THEOREM 2.1. Suppose {αly , am} is a family of elements of A
such that (Πnau , Πnam) = An for each n^>0. Then (au , αm) = A.

THEOREM 2.2. // {ζu « ,fm} is a finite family in An and
ζu , L have no common zeros on ^/?(An) (the structure space of
An), then (ξl9 ••-,?„) = An.
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The spectrum ^//^ of A has the following structure. ^//^ —
U {^//k\ ft = 0, l ,2, }, where each ^//k is homeomorphic to ^/S(Ak),
the structure space of Ak. The homeomorphism σk of ^?(Ak) into
^//Q is defined by [σk(Mk)](x) = Mk(Πkx) for each jlf * G ̂ ( A A ) and
x e A

THEOREM 2.3. If A is a commutative F-algebra with identity,
then A satisfies the condition (hH).

Proof. We fix a family {xu , xn} in A satisfying h(xu , xn) = ^
and show fΓfo, , #w) = 0. We need only show that for each k ^ 0
the family {Πkxly •••, /7fcx%} generates the improper ideal AΛ. We fix
k ^ 0. For each i we have (/7*O(JkP) = Xi(σkM

k). Therefore, the
family {(77^)^, , (Πkxny} has a common zero on ^/f(Ak) if, and
only if, the intersection of ^//k and h(xu —, %n) is nonempty. We
have assumed that h(xu • • ,αn) is empty. Thus, Theorem 2.2 implies
(Πkxu , /7fc#n) = Afe for each & Ξ> 0, and we obtain (xl9 , xn) — A.

Thus, i^-algebras always satisfy the conditions of Theorem 1.4
and ^// — w^. We next extend Theorem 2.1 to pin down further
the space ^/ά We note that Theorem 2.4 is immediate for Banach
algebras (since „ ^ = ^//) and false for commutative LMC algebras
in general (cf. Example 1.1 above).

THEOREM 2.4. If It and I2 are closed ideals in A and if
h{Ix) Π h(I2) = φ, then £ + J2 = A.

Proof. We shall construct two sequences in ΠnAn, show that
they yield elements of Ix and J2 whose sum is 1. We let F1 = h(Iλ)
and F2 = fc(/2). Since the tail of a sequence is the important thing
in determining whether it corresponds to an element of A we assume
that F1 Π w^° Φ Φ and F 2 Π ~/̂ ° ^ ^. If not we begin the construc-
tion with the first integer k so that both Fλ and F2 meet ^€k and
define the first k terms by the maps Πk, i = 0, , & — 1.

Since ί\ Π F2 = ^, σ-^^i Π ~ ^ n ) Π ̂ W Π ̂ T % ) = Φ in ^^(A n )
for each w ^ 0. We first note that for each n ^ 0 Πn(I^~ and Πn(I2)~
are closed ideals in Aw and Πn(I^)~ + Πn(I2)~ = An. If not, then there
exists If% G (A.) such that Πn(Iύ~, Πn(I2)~ S i^ n . Then Λ, I2QM =
σn(Mn)1 and MeFx Π F 2 , a contradiction. By Lemma 7.8 of [9] /,- is
the inverse limit of the sequence {ΠJJj)"} with the restricted homo-
morphism, for j — 1, 2, and for each pair n,m,n g m, //^[//.^(ly)-] is
dense in Πn{IόY, since the former contains Π^lΠ^Ij)] = Πn(I3) which
is dense in Πn(Ij)~.

We first choose a sequence {ε%}"=ι of positive numbers such that
the series Σ ϊ U ε^ converges. Since ΠQ{I^~ + Π0(I2)~ — Ao we choose
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ξί e ΠO(IS)~, j = 1, 2 such that £J + £* = 1.
We next choose ζf in Π^I^J = 1, 2, such that ζ} + ζ? = 1, then

choose ηi in Π^IjY.j = 1,2, such that

min (εx/4, 6^4 max || ξ( \\) .
\ 3=1,2 J

This is possible because /7J[/71(Ji)-] is dense in Π0(Id)-,j — 1,2. We
let ζ{ = rj{ + ζf(l - r]\ - 5$, i = 1, 2. Then

and || ΠXM - U\\< el9 for each j .
Proceeding inductively we choose for each n^l,j = l,2,ξie Πn(Ij)~

such that || Π^H - fi-i II < eβ> and ft + £1 = 1. Then for k =
0,1, , ̂  — 1 we have

(3.1) l l / Z ϊ f ί - ^ Γ ^ i l K e .

From this point on the construction is identical to that given in
the proof of Theorem 4.2 of [2]. We sketch the important steps.

We first fix n 2> 0 and let xό{n)k — Π\ξ{ for each k ^ n,j = 1, 2.
{ίCiί̂ ifcjΓβn is a sequence in Π^Ij)" and satisfies

( i ) Πn

n

+I(xj(n + 1),) - &,-(&)* for each k ^ n + 1, j - 1, 2;
(ii) ^(njfc + x2(^)fc = 1,
(iii) || x3in)k - x5{n)k+v \\ < εk+1 + + εk+p.

Thus the sequences are Cauchy for each n, j and converge to elements
Xj(n) in Πn(Iά)~~ for each n ^ 0, j — 1, 2. There exist ^ e I19 x2 e I2

such that Π%(xό) = xd(n) for each n ^ 0,i = 1, 2. Thus, ^ + x2 = 1.

COROLLARY 2.4.1. // F1 and F2 are disjoint hk-closed subsets of
^ o , then C U F, Π Cl^ F 2 = ̂ .

Proof. Letting Ix = /bî  and /2 = fcF2 yields ^ + /2 = A. Apply
Theorem 1.5.

COROLLARY 2.4.2. If A is a commutative F-algebra with identity,
then ^y/ί — TF(^Γ0, hk). Moreover, if A is regular, then A is normal
and

Proof. The first statement follows from Corollary 2.4.1, Theorem
1.5, and Corollary 1.7. The second follows from Corollaries 1.7 and
2.4.1.

We note that Rosenfeld [11] has indicated a proof of part of
Corollary 2.4.2 (A regular implies A normal) using Silov's theorem.
This theorem also yields a proof of Corollary 2.4.1, since Fx U F2 is
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M-closed in ^/^ and is ^PQ(B), where B = A/(kF1 Π kF2). However,
since the application of this theorem yields an element a of A such
that a ~ 0 on Fι and a = 1 on F2, we can conclude only that
kFx + kF2 = A. Thus, it does not appear that the proof of Theorem
2.4 can be simplified by the use of this tool.

THEOREM 2.5. Let I be a closed ideal in A and B = A/I. Then
B is a commutative F-algebra with identity, ^/fo(B) is homeomorphic
to h(I) with respect to both the w*- and hk-topologies, and ^// (B) =

Proof. The first conclusion follows from the open mapping theorem
for F-spaces (cf. [8, Lemma 11.3]) and the fact that the natural map
77 of A onto B is continuous and open. The range of 77*: ^#Ό(B)—>
^/fo(A) is easily seen to be h(I) and it is also immediate that 77* is
a w*- homeomorphism. For convenience we let F = h(I) for the re-
mainder of the proof.

We show that for each E Q F, Π*-\hk(E)] = h'k'[Π*-\E)], where
hf and kf are the h- and k- operators for B. Mf € Π*~\hk(E)\ if, and
only if, Mehk(E) (M = Π*M') if, and only if, M(x) = 0 for each
x e kE. And x e kE if, and only if, M^x) = 0 for each Mte E if, and
only if, M[(Πx) - 0 for each M[ e Π*~\E). So x e kE if, and only if,
Πxek'[Π*-\E)]. Thus, from above, M(x) - 0 for each xekE if,
and only if, M'(Πx) = 0 for each Πxek'iΠ*-1^)], if, and only if,
M' e h'k'[Π*~ι(E)\. The equality is established and it is immediate
that 77* is a homeomorphism with respect to the M-topologies in
^//,{B) and F.

For each xeA we have Π*[h'{Πx)\ = h(x) Π F. Thus, there is a
lattice isomorphism of £?' = {&(<?!, , £«): {f i, , ?»} £ -B} onto SfF =
{E ξΞ: F: E = B f) F fov some JB G .^}, and there is induced a homeo-
morphism of w£f* onto w^5 . Therefore, ^£(β) is homeomorphic to
wjSί5 . For each Me CU U ) F we define τ{M) = {Ee^F:Me CU E}.
M—*τ{M) is a one-to-one mapping of Qλ^U) F onto w£fF. From the
easily verified equation H(x) Π Cl^( i l ) F = C[Λ(a;) Π F] it follows that
τ is a homeomorphism.
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