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If M is a closed subgroup of a locally compact group G,
we consider the problem of finding a measurable transversal
for the cosets G\M — {gM: qeG}—a. measurable subset T c G
which meets each coset just once. To each transversal T
corresponds a unique cross-section map τ: G/M —> T c G such
that π o τ — id, where π: G —> G/M is the canonical mapping.
For many purposes it is important to produce reasonably well
behaved cross sections for the cosets G/M, and the generality
of results obtained is often limited by one's ability to prove
that such cross-sections exist. It is well known that, even if
G is a connected Lie group, smooth (continuous) cross-sections
need not exist; however Mackey ([3], pp. 101-139) showed, us-
ing the theory of standard Borel spaces, that a Borel meas-
urable cross section exists if G is a separable (second countable)
locally compact group. In this paper topological methods,
independent of the theory of standard Borel spaces, are ap-
plied to show that Borel measurable cross-sections exist if G
is any locally compact group and M any closed subgroup which
is metrizable (first countable). The constructions become very
simple if G is separable, and give a direct proof that Borel
cross-sections exist in this familiar situation.

It is hoped that results of this sort will be helpful in efforts to
remove separability restrictions in the study of induced group re-
presentations. There are several other areas where one is limited, in
part, to studying separable groups by reliance on standard Borel space
methods in producing cross-section maps. Cross-sections are widely
used in classifying group extensions and their representations—see
Mackey [4], [5] (and Rieffel [7], where some attempts are made to
extend results of [4] to nonseparable groups). In another direction
authors such as Leptin [2] have tried to represent group algebras
L\G) as vector-valued group algebras L\M, X) for a subgroup M.
These constructions are successful provided we can insure that there
is a measurable cross-section of G/M.

2* We define measurability following Halmos [1], but must dis-
tinguish between several commonly used variants of this definition.

DEFINITION. Let X be a topological space. By B(X) will be
meant the σ-algebra generated by the closed sets, by C(X) the σ-
algebra generated by the compact sets. By B0(X) and C0(X) will be
meant the σ-algebras generated by the closed Gδ sets and compact G5
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sets, respectively. If X is σ-compact then B(X) = C(X) and BQ(X) =
C0(X); if X is metrizable then B(X) = fio(X) and C(X) = C0(X).

Let G be a locally compact group, M a closed metrizable subgroup.
Then M has a complete left-invariant metric p which gives it the
left uniformity induced from G (see [6], pp. 34-37). A metric ρgM

may be introduced in the coset gM, by setting

pgvigmi, ^w2) = p(m19 m2) = ρ(e, mτιm2) .

This is well-defined, because of left-invariance of p. Furthermore, it
gives to gM the left uniformity from G. Write G/M for the space
of left cosets {gM: g e G} with its usual topology and let π:G—*G/M
be the canonical map.

DEFINITION. We will say that AczG is of height <ε if the
diameter of A Π gM is less than ε for the metric pgM, for all g e G.

LEMMA 1. For any ε > 0, the sets of height <ε form a basis
for the topology of G.

Proof. Let U be a neighborhood of the identity in G such that
J7~1ϊ7n M has diameter <ε. Then the diameter of g0U Π gM for the
metric pgM is also <ε for all g0 and g in G since ρgM(gmly gm2) =
p(e1m~[i/m^1 and if both gm1 and gm2 are in g0U then m r 1 ^ is in

We recall that any locally compact group G has a σ-compact open
subgroup F.

THEOREM 1. Let G be a locally compact group, M a closed metri-
zable subgroup. Then

(a) There is a transversal T for the left cosets of M which is
in B(G). Furthermore, the corresponding cross-section, τ:G/M—+G,
is measurable with respect to C(G/M) and C(G).

(b) // there exists an open subgroup of G which contains M
and whose image in G/M is o-compact, then the cross-section can
also be made measurable with respect to B(G/M) and B(G).

REMARK. The conditions on M in (b) are quite weak—see Remark
3 at the end of this note.

Proof. Let F be an open σ-compact subgroup of G. Although
F need not include M (there might not be any subgroups F satisfy-
ing (b) for arbitrary G), π(F) is σ-compact in G/M since π is con-
tinuous. Let L — F'Π M and let Θ:F-^F/L be the canonical map
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to the space of left cosets {fLifeF} with its usual topology. Then
Θ is continuous, so θ(F) = F/L is tf-compact.

We shall begin by constructing a transversal S for the cosets of
L i n f . S will be of the form Γ)ζ=0Sn, where Sn is of height <l/2*
(with respect to some preassigned left-invariant metric on L),
So => & z> , and each Sn Π fL will be a nonempty closed set in fL.
From this it is clear that S will be a transversal.

For each feF let C(f) and D(f) be compact neighborhoods of /
in F, with C(f) of height < 1 and D(f) c int C(f). let {/,-: j = 1,2, . . •}
be a sequence such that U?=i θ(D(fs)) — FjL. Such a sequence exists,
by σ-compactness of F. Let Cs = C(/., ), A = £>(/,).

Inductively, suppose we are given compact sets CJQ,...,Jk and Dio,...,ifc

in ί7, for k = 0, , w, where the subscripts i^ range over the positive
integers, and the sets satisfy
( 1 ) CjQ,...,jk has height <l/2* if 0 ^ k S n,
( 2 ) C i o , . . . , i 4 cC i o i M if l ^ f c ^ t i ,
( 3 ) JDio,...fifc c int Cjo,...,jk if O^k^n,

(4) U?fc=i θ(Dh9...9ih) 3 ff(ΰifl / J if 1 ^ Λ ^ Λ.
Then Cyo,...fJ-n+1 and DJOf...tSn+1 may be defined so that (1), « ,(4) still
hold with w replaced by w + 1. The construction is as follows. For
each feDjQt...tdn choose a compact neighborhood CJQ}...}Jn(f) lying in
the interior of Cjo,...,3 n, and a closed subneighborhood Dίot...tjn(f) in
the interior of Cjo,...,j%(f). Then by compactness of Djo>...)jn a finite
subfamily fu •••,/& may be chosen so that

For l£j£k, let C i θ i... f i l l i i - Cio....,in(fj) and Z) i o.... f i i | i i - D io>... f i l l(Λ).
If i > /c, simply set Djot...tίnti = Ch,...,jn,j = ^. It is then straight-
forward that (1), •••,(4) are still satisfied.

For convenience, we will also define DJQ,...}Jn — ̂  whenever j n = 0.
Now set

£7, - e(Dd)\e(\J A ) =

(so £Ί = ^(A)W = 0(A)), and inductively

Note that only finitely many EJQf...tJn are nonempty for fixed
(io, * ,in-i) Furthermore EJOί...Jn_ι is a disjoint union of the sets
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{EJQf...>Jn:jn = 1, 2 •} and each set E3 Qt...,Jn is a difference of com-
pacta in F/L.

Now look a t Cyo,...,yw Π θ~ι(Eio,...,in). Since

it follows that θ(Ch,...,Jn Π θ-ι(Eh...,3 J) is precisely EJQ,...,3 n. Since
EJQ,...yJn is a difference of compacta in F/X, θ-1(EJQf...)jJ is a difference
of closed L-saturated sets in i*7 and, since C3 0,...,3n is compact,
< V .,;% Π θ~\Eh,...tSJ may be written as a difference As*...t5\βh,...,s% =
Aso,'~.Sn\BSo.'~.>'nL w h e r e A i o - - i . a n d Bi<κ Λ a r e compacta in ί 7 with

Define Sn = U <V.., i w Π θ-\EJQ,...tjf), so that

s . = U (A,0>...,,K\B,0,...,,J .

Note that if fL e E3o,...fίn then also fL e EJQtm..t3 n_im Thus there is a
sequence jQ(f),3\(f), ••• with the property that fLe Ejoifu...,jn{f) for
each w. Then SΛ Π /L = C io(/),..., i%(/) Π /L. Thus Sn and S - f |^o Sn

have the asserted properties.
Now we return to the big group G and its subgroup M. Let

R = {ga; a < α0} be a well-ordered family of representatives for the
cosets of F in G, and 7Γ the canonical map π: G —• G/M.

Notice that S is also a transversal for the cosets of M in the M
saturated open set FM. To see this, we must show that SM — FM,
and that S Π fM consists of only one point for each / e F. Now:
SM = SM2 =) (SL)M - FM, so SM = FM. Also, if fm1 and /m2 are
both in S with mi and m2 in Jkf, then mx and m2 are in / ^ S c F,
so mi and m2 are in F f l M = L , and since S Γ) fF is a single point,
m1 — m2.

Now let S = UgeR^S. We easily see that S is in B(G); indeed,
let Q be {Xa F:\JgeRgXeB(G)}. Then clearly Q contains all open
sets, and it is easy to check that Q is closed under countable union
and complementation. Thus Q contains all sets of B(F); in particular
SeQ, so SeB(G). Obviously we have π(S) - G/M, but S is not yet
necessarily a transversal, because gM Π S may contain more than one
point. We shall correct this by intersecting S with a certain closed
set so that the intersection will be a transversal. Let U =
\Ja<a0 (QaF Π \Jβ<a 9βFM). Then U is open, and we set T = S\U. Thus
T = \Ja>ao(9aS\Uβ<agβFM).

To see that π(T) = G/M, fix geG and let 7 be the first ordinal
for which grF Π gM is nonempty. Since SM — FM, it follows that
gΊSΓ\gM is also nonempty, containing some g. If a Φ 7, then

grF = φ, so g£gaF. On the other hand, if a = 7, then for
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β < 7 we have gβFf] gM — φ, by minimality of 7, so also gβFMΠ gM=φ,
and g £ gβFM. Then g g [Jβ<r gβFM. Thus

gί U (gaFΓί\JgβFM)= U,

but g e grS c S , so geT, and τr(#) = π(g).
To see that Γ Π gM consists of exactly one point, let g and 7 be

as above, and suppose gme TΓ\ gM for some me M. Then gmeg8S
for some δ. By minimality of 7, we have 7 ^ δ. If 7 = δ, then ^7^
and gjxgm are both in S, so are equal, since S is a transversal for
the left cosets of M in FM. Thus m = e. On the other hand, if
7 ^ έ , then gm lies in both g s F and \Jβ<s gβFM, hence is not in T,
contradiction.

Having constructed a transversal TeB(G) for the Λf, cosets we
now examine the measurability properties of the corresponding cross-
section τ. For I c G , we have τ~\X) = π(T n X). Let Γ - { I c G :
r-1(X) G C(G/M)}. Then Γ is closed under countable unions and dif-
ferences. We shall show that T contains all compact X, which will
complete part (a). If X is compact, then it meets only finitely many
left cosets of F9 say gajF, , gakF, so that

τr(Γ n X) - U U(9aβ Π X)\ U π(9βFM)) .

Here π(gS Π X) may be written gπ(S Π g-1X) if we let G act on G/ikί
in the usual way.

Now: for any compact set Γ c G ,

s.ny= U ((40,.,i,n

and since .4^,...,^ and Bh>...Jn are subsets of F, this may be written
Ui0....,y, ((ΛV ' . J Π Γ)\β,0>..JκM). Then

π{Sn n Γ) = u WΛv ^ n Γ)\7r(β3 0,...,ίB))

This is clearly in C(G/M) in view of the compactness of Y and con-
tinuity of π. Next, we show that π(S ί l Γ ) = Π^o ^(S% Π Y). Clearly
τ r ( S n 7 ) c Π : = o ^ n Γ ) . Now, SnΠfM=SnΠfL = Cio(/,,...,y.(/)n/L,
s o S . Π Γ n /M = Cio(/),...,in(/) Γl Γ n / L . If this is nonempty for each
w, then, since C i o ( / ) , . . 4 + l ( / ) cC i o ( / ) , . , 3 ; ( / ) , we have Sf)YnfM =
f|r=o S w n 7 n / M ^ ^ . Thus, π(f) e π(S n Γ), and flΓ-o ^(S. Π Γ) =

n Y).
Applying this to Y = grxX, we get π(S Π g~ιX) e C(G/M), so
Π ̂ X ) 6 C(G/ikf), hence U*«i ^ β ί S Π X) is in C(G/M), and X G Γ.

Part (a) is completed.
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Next, suppose the added assumption of (b) is satisfied: then F
may be chosen to contain M, so that L = M. In this case the set U
is empty, and T = S = U«<«0 9«S. Thus T = Γl"=o T,, where Tn =
\Ja<ao g*S.. Since S. = Uio. ./. ( ^ v - Λ^o /.Λί)» π(ffS» ΠZ) =
gπ(S. Π flr-'A") = U/β.....i,^(Λ, /» Π flr^W,,,...,,.)). Then

n X ) = u </απ(sκ n srj'X)

= U U 9a(π(Ah,...,ln Π 0r
h '" 3n a<a0

= U ( U 9MAit,...,Jnng?X))\(\J gaπ(Bh,...,in)

with the last equality valid since FZD AJQ,...fJn Z) BJQf...,Jn and the sets
π(gaF) — gaπ(F) are disjoint for all a < a0. Now assume X is closed.
Then \Ja<aogaπ(ASQf...jnn g~ιX) and U«>«0dMBJQ,...,Jn) are sets in G/M
whose intersections with each of the disjoint open/closed sets gaπ{F)
are closed, hence they are themselves closed sets in G/M. Thus
π(Tn Π X) e B(G/M). A similar argument to one used in showing that
τ is measurable for C(G/M) and C(G) may now be used to show
π(Tί)X) = Πn=o (TnΠX). Thus π(T Π X) e B(G/M). As before, we
consider the family of sets for which τ~\X) = π(T f] X) eB(G/M).
It is closed under countable union and complementation, and contains
all closed sets; thus it contains all of B(G). Thus (b) is proved.

REMARK 1. If G/M is σ-compact, then the argument evidently
becomes much simpler.

REMARK 2. Openness of the map π was nowhere used. Thus,
the theorem can actually be stated somewhat more generally: if the
locally compact group G acts as a transitive group of homeomorphisms
of the locally compact space X, G x X—+X is separately continuous,
and the isotropy group M = {g: g(x0) = x0} is metrizable, then there
is a measurable transversal T (this part is actually no improvement
on Theorem 1), and the cross-section map r: X—> (?, given by τ(x) = that
point g in T for which gx0 — x, is measurable, in the various senses
described in the theorem (repeat the above measurability arguments
taking π : G—> X, with π(g) = g{x), in place of π : G—> G/M) .

REMARK 3. The hypothesis of (b) in Theorem 1 will be satisfied
if any of the following three conditions hold:

( i ) G/M is σ-compact
(ii) M is normal
(iii) M is σ-compact.
For (ii), take any -̂-compact open subgroup Fo of G. Then F —

FQM is also a group, since {fιm^)(fzm^ = (/i(m1/2wr1))(m1m2), F0M is
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open in G since Fo is, and the image of F in G/M is the same as the
image of FQ; but Fo is tf-eompaet, therefore so is its image.

For (iii), again choose a σ-compact open subgroup Fo of G, set
H = F0M Π MF0 D f o U l , and let F = (JΓ=i Hn. H is open and H =
H~\ so ί 7 is an open subgroup. Furthermore if Jn and Kn are
ascending compact sets with U~=i Jn — ^o and \Jζ=1 Kn — M, then the
compact sets (JnKn Π KnJn)

n have F a s their union, so F is cr-compact,
and therefore its image in G/M is σ-compact.

REMARK 4. Under the hypothesis of (b), if we choose the Cίo,...,3 n

and DJQi...)3-n to be G5 sets, then T will also be J?0(G)-measurable, and
τ will be measurable with respect to C0(G/M) and CQ(G), and with
respect to B0(G/M) and J?0(G).

REMARK 5. To some extent, it is possible to replace local com-
pactness by the Lindelof property. Thus, for example, it may be
shown that if G is a topological group, M a closed metrizable sub-
group which is complete in the left uniformity, and G/M is Lindelof,
then there exists a 2?(G)-measurable transversal. However, we will
neither prove this here, nor pursue this type of generalization. More-
over, it does not seem possible to prove measurability of the associated
cross-section map in this context.

REMARK 6. It is apparent from our construction that if KCG/M
is compact, then the closure (τ(K))~ is compact in G; this uses openness
of π : G — G/M.
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