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The interior of a closed convex curve C in the Euclidean
plane can be given a Hubert metric, which is preserved by
projective mappings. Let p, q be points interior to C and let
u, v be the points of intersection of the line pq with C. The
Hubert distance h(p, q) is defined by

h(p, q) = log d(u, p)d(v, q)
d(v, p)d(u, q)

where d(x,y) denotes Euclidean distance. If C contains at
most one line segment then h(p, q) is a proper metric and the
metric lines are the open chords of C carried by the Euclidean
lines. Following Busemann [1, p. 237], we define the (quali-
tative) curvature at a point p as positive or negative if there
exists a neighborhood U of p such that for every x, y e U we
have

2h(x, y) Ξ> h(x, x) respectively 2h(x, y) ^ h(x, y),

where x y are the Hubert midpoints of p and x and of p and
y respectively.

In an earlier paper [2] we proved that any point p at
which the sign of the curvature is determined is a projective
center of C; that is, there exists a projective transformation
which maps p into an affine center of the image of C. We
also stated the conjecture that a Hubert geometry has no
point of positive curvature. It is the purpose of this paper
to prove that conjecture.

Let C be centrally symmetric about the origin O. We may further

assume that C has vertical lines of support at its points of intersection

with the se-axis. Thus we may describe the upper arc of C by y — y(x)

and the lower arc by y = —y( — x). Consider the points

a = (εx, ey(x)) , b = (εx, -εy(-x)) , 0 < ε < 1 .

Then

h(O, a) =
(1 - ε)vV + y(x)2-Vx2 + y{xf

= log λ±JL = 2ε + 4 ε3 + O(ε5) .
1 - ε 3

If a = (Xx, \y{x)) is the Hubert midpoint of 0 and α, then ac-
cording to (1) we have
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1 - λ 1 - ε

so that

(2) λ = 1 ~ V l - g 2 = λε + i-s3 + O(ε5)
S Δ o

Now let /&! = &(α, 6) so that

β) - ^(~ ε α ;) + ε ^ ) 1
?) y( — εx)-εy(-x) J

+ 6

ε

y(-ex)
= e(y(x) + y(-«))(_!_ + — J — -

^2/(s») y(-ex)

3 V \ ) \ ) J

We now suppose that the curve C is twice differentiate at its
points of intersection with the /̂-axis. We then have

y(ex) = 3/(0) + y'(0)ex + i-/'(0)εV + o(ε2) ,
it

so that

1/(0) L y(0) \\ y(0) ) 2 y(0)
1 = ^ + 0(6)

y3(0)

Substituting (4) in (3) we have

2/(0) / 2

+ o(ε3) + £ {y\x)

y(0)

If &2 = fe(α, 6), where b is the Hubert midpoint of O and 6, then
(5) holds for h2 if we replace ε by λ. Using (2) we get
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1/(0) %(0) L V |/(0)

3UΆ J # ) +
1/(0)

From (5) and (6) we have

1 + 0(ε3)

a;) J

(2Λ, - K) , f ) + a
e3(2/(x) + y(-x)) 2 2 \ i/(0)/ 4

_ 1 j/3(^) + v\-x)
2i/2(0) j/(a;) + y(-x)

,

Thus the origin could be a point of positive curvature only if
the right side of (7) is nonnegative for all sufficiently small values
of e, which means that the leading term is nonnegative for all x.
For small x we have

y(x) + y(-x) "• W L V V 2/(0) ) y(0)

so that the leading term on the right side of (7) is

For small α? this term can be nonnegative only if τ/'(0) = y"(0) = 0.
Thus if O is a point of positive curvature and C is twice differentiable
at (0, y(0)) then C has zero curvature at (0, y(0)). But C is twice
differentiable almost everywhere and any point of such differentiability
can be taken as a point of intersection with the y-&xis after a suitable
affine transformation. Hence C must have zero curvature almost
everywhere. This implies that there must be points of infinite curva-
ture (if corner points are included in this category).

Let us start again, as before, but with (0, y(0)) taken as a point
of infinite curvature. This means that, if m(x) is the slope of a line
of support of C at (x, y(x)), then

(9) lim m(-ε 1 )-m(ε 2 ) = ^ ^
εvε2-*o+ m i n ^ , ε2}

We can rewrite (3) as

(10) K = e(y(x) + y(- +
y(ex) y(-εx)

and analogously
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(ID

Thus

= Ί { y { x )

- K = ε(y(x)

(12)

.x) - M(-e2x)) + 0(ε3)= -2s2x(y(x)

where M(x) is the slope of a line of support to the curve y — l/y(x)
at the point (x, l/y(x)) and (ε/2) < ε19 ε2 < ε. Since the curve C:y =
l/y(x) has infinite positive curvature at (0, l/(y(0)) our comment (9)
applied to C yields

= lim
min {ε^, e2x}

Thus, from (12) we get

(13) lim
ε->0

Hence for sufficiently small ε, we have 2h2 — ht < 0 and O cannot
be a point of positive curvature.

From (7) it can be seen that not every protective center is a
point at which the curvature has a sign. For example, if y'(0) =
y"(ϋ) = 0, then the leading term on the right of (7) is positive for all
x. In other words the center 0 is not a point of curvature if there
exist a circumscribed parallelogram that touches C at the midpoints
of its sides and C has zero curvature at one of the points of tangency.
Even if C is twice differentiate everywhere, it does not seem easy
to determine whether the complicated inequality expressed by the right
side of (7) and linking three points of C-is always satisfied.
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