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Let V,(x, Q) be the polynomial determined by the recur-
rence relation

(1-1> Vm+2(x1 Q) =% V'm—l-l(xy Q) - Q' Vm(wy Q)

(m=1,2,---),Q an integer, with Vi(z, Q)= 2 and Vy(x, Q) =
2? — 2Q. In a recent paper, B, W, Brewer has defined the sum

(1.2) 4,(Q) = ’Zx(vm(x, Q)

where x(s) denotes the Legendre symbol (s/p) with p and odd
prime,

The purpose of this paper is to consider the evaluation of
A:,(Q) when 7 is odd. The principle result obtained is the
expression of 4,,(Q) as the sum of ¥(Q)- 4,(1) and one half
the character sum ¢,.(1). ¢,(1) can in turn be expressed in
terms of the Gaussian cyclotomic numbers (¢, j). The values
of A4Q) and A4,,(Q) follow immediately from this result utiliz-
ing values for A5(1)= A; and A4;(1) = 4; computed by B, W,
Brewer and A. L. Whiteman,

2. The character sums 2,(Q) and 0,(Q) and Brewer’s lemma.
Let p be an odd prime and ) a generating element of the multiplicative
group of GF(p?). Then A\ = g is a primitive root of GF'(p). Set
Q=g =N 0<r<p—1. In order to facilitate the evaluation

of 4,(Q), Brewer defines the following two sums:

0@ = S g0 1 qeameo

(21) p—1
= 821‘ X(gms + gmrg._ms)
and
p+1
0,(Q) = >, y(Amitte—bn . Qmp-—mip=1+n)
(2.2) t=1

=]
+

1
— X(x'rn(t(p——l)-(»r) + )\'mr(p+1))\1—7n(t(p—1)+r))
t=1

I

Brewer relates the sums 2,(Q) and 6,(Q) to the sum 4,(Q) by the
equation [2, Lemma 2].

(2.3) 24,(Q) = 0.(Q) + 2.(Q) .

(Compare also [1, Lemma 2] and [14, Lemma 1].)
The following theorem is fundamental [2, Th. 1].
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THEOREM 2.1, Let p be an odd prime, A4,(Q) be defined as in
(1.2). If x(Q) = Q) and Q" = 7*Q (mod p), then 4,(Q) = x(n)"4,(Q),
(m = 1’ 2’ .. .)‘

3. The Jacobsthal sum. Closely related to the Brewer sum are
the character sums of Jacobsthal

(3.1) 5um) = 55 1ge + m)

and the related sum

(3.2) mngﬂm+m.
We note

4Q) = S 1 — 2Q) = ¥i(~2Q) + 1(~2Q)

and
4@ = 3, 25 — 3Qe) = 4(—3Q) .
In general if m is even and g a primitive root of p
Q — p——l’\ ms mpy—ms
(3.3) n(@) = 3 2(g™ + Q"g™™)

= ”‘/fzm(Qm) y

while if m is odd
2@ = 5 20" + Q™)

(3.4) =20 Al £ Q)

= 5 2" ) 0(e) 1™ + Q")
= Gum(Q") .

The following results concerning Jacobsthal sums will be applied:
if pta [10, Equation 3.8]

(3.5) P(na?) = y(x) - (n) ,

the reduction formula [10, Equation 3.9] and [7, Equation 6]
(3.6) $o() -+ P (n) = Pz (1)

and |7, Formula 10} if ¢ is odd
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(3.7 Pao(n) = 4,(n) + X(n)-g(n)

where n-n’ = 1 (mod p).

4. Cyclotomy. Let » be an odd prime and g a primitive root
of p. Letebeadivisorof p—1,p—1=e-f. The cyclotomic number
of order e, (¢, 7) is the number of solutions of 1 + g*+¢ = g+ (mod p),
$,t=0,1,+-., f— 1.

If we write 2¢f = p — 1,

) = 310 + 1)

f—1
= 2e >, x(g* + 1)
§=0
g + 1 = g*** (mod p) a even

2¢s 1) =
x(g* + 1) —1 g% +1=g*+ (modp)a odd .

Thus in this case (1) can be expressed in terms of the eyclotomie
numbers of order 2e

D D) = o B (~1(2e¥(0, )

In the theory of cyclotomy, the Jacobi sum and the related
Legrange resolvent play a fundamental role. In what follows we will
use some of the properties of the Jacobi sum.

Let 8 = exp (2zwife),e-f + 1 = p. The Jacobi sum is defined by
the equation

(4.2) (8™, B*) = s @m inde +nindd

a+b=1(mod p)
1ga,bsp—1.

The following equalities for the Jacobi sum can be derived: [12,
Formula 2.4]

(4.3) P(B™, B) = p(B", B™) = (=1)"yp(8—"", B") .
Placing » = 0 in (4.2) we have [12, Formula 2.5]

4.4 (B"‘B°)—{p_2 m=0
*.4) LACH -1 l<m<e—1

and the important formula

(4.5) (B, B") Y (BT, BT =D

provided e does not divide m,n or m + n.
Since (8™, B") is periodic in both m and n with respect to e, it
may be expanded into a double finite fourier series [11, Formula 2.6]
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(4.6) W, B = (=1 S, (h, BB
We may also write (4.6) in the inverted from [11, Formula 2.7]
. b k) = S5 (—Lymp(8", BB

In (4.6) replace m by vn, where v is an integer, collecting the
exponents of £ in the same residue class modulo ¢, we get an alternate
form of the finite fourier series expansion [11, Equation 2.8]

(4.8) VB, £) = (=1 3 Bli, v

where the fourier coefficients B(7, v) are the Dickson-Hurwitz sums
(4.9) B(i, v) = ,2 (h,i — vh) .

The inverted form of (4.8) is

(4.10) e-B(i,v) = 3 (~ 1) (8, A5

If e-f=p—1, Whiteman [10, Formula 5.8] expresses the Jacobsthal
sum in terms of the cyclotomic function B(%, v)
-1 ., (49° dd
(4.11) ¢Bp, 1) =[P~ 1ol eo
»— 1+ ,(4g°) e even .

Thus if e-f = p — 1 with ¢ odd, from (3.7) and (4.11) we can write

"lee(l) = 2¢e(1)
(4.12) = 2(e-B(1,1) — (p — 1))
= 2¢(B(i, 1) — f)

where ¢ is selected so that 4¢° = 1 (mod p).

5. The evaluation of 4,,(Q) for odd values of n. In this
section we will develop our principle result in the evaluation of 4,,(Q)
for odd values of n. We will consider 2,,(@) and 6,,(Q) separately
and combine the results by use of equation (2.3).

THEOREM 5.1. If d is the g.c.d. of m and p + 1 and @ = A\
then

(5.1) $(Q) = 04Q™") .

Proof. This theorem is a direct result of the fact that if the
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g.cd. of @ and M is d, and {r,, r,, - -+, 7,} is a complete residue system
modulo M, then the set (a-7, a-7,, -+ -, a-r;} contains the same elements
modulo M as the set {d-r, d-7,, ++-,d-7,}. Now if the g.c.d. of m
and p + 1 is d, then

em(Q) — Til X()\)mu’(p%)—kﬂ + )\er(pﬁ»l))\l—mi(p—l)ﬁ—r))
=1

p+1
— Z X()’d(i(p—lw(mr{d)) + Xd(mld)r(p+1))\l-—d(i(17—l)+(m'r/d)))
i=1

= 0d(led) .

We note d < m unless » = —1(mod m). This exceptional case is
considered in the following two theorems.

THEOREM 5.2. If p = (dm)-f — 1
(5.2) 0n(Q) = 0:0(Q) = 0.

Proof. {2m-1,2m-2, -, 2m-(p + 1)/2m} has the same elements
as 2m-1 + 2mf,2m -2 + 2mf, - -+, 2m-(p + 1/2m) + 2myf} modulo p + 1.
Algo {m-1,m-2, ---, m-(p + 1)/m} has the same elements modulo p + 1
as {m-1-+2mf, m-2+2mf, - -+, m-(p+1/m)+2mf}. Since y(\*"/ ") =
YAy = 1 when p = 3 (mod 4), we have

(p+1)/2m

02m(Q) — 2m Z X()\Fm(i(p—l)ﬁ-'r) + QZm)\J—2m(i(p»—1)+r))
=1

(p+1)/2m :
=2m 3, x(kz"”(“"“””)*(pz_”/z + Q2M)\J—2m(i(p—1)+r)+(p2-1)/2)

i=1

172—-1> (p+1)/2m

= 2 . 2m (i (p—1)+7) 2my ~2m (i (p—1)+7)
mx(k ; XN + @ )
and

{9m(Q) _ m(pglm X()\,m(i(p-—-l)—{—r) + Qm)\l—m(i(p—l—}-r))
i=1

(p+1(/m
=m Z X()u"’”“”""“’“”z_“/z + me—mu‘(p«1>+r)+(p2~1)/2)

i=1

= ~0m(Q) .

THEOREM 5.3. If p = (2f + 1)m — 1 with m = 2 (mod 4) and Q =
AP then

(5.3) On(Q) = On(Q) .

Proof. Since now p = 1(mod4), y(\*1*) = 1. Let F=2f+ 1.
The set {m-1,m-2, -+, m-(p + )/m} U {m-1 + (m-F/2), m-2 + m- F/2,
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«,m-p + 1/m + mF/2} has the same elements as the set {m/2.1,
m(2-2, «-+, m/2-2(p + 1)/m} modulo p + 1. Thus

g @{Rim (i(p—147) (p+1) (itp—1)+7)
mw = M A=+ AT (P —mli(p—1) 47
>, - )
p+1)/
— _Wﬁ Z X()\[m(i(p—-lHr) + k‘mf(pﬁ—l))h—-m(i(p—l)-i—r)
2 =
My 2yjzy PRI mtip-nan mr(p+1)y —m(E(p—1)+T)
+ AT 2 A + A A )
= ’ﬂ_’b @rgm X()\Jm/2(i(p—l)+2r) + Km/22r(p+1))\l—-(m/2)(i(p_1)+¢))
2 =i
= Onn(Q) .
THEOREM 5.4. If n 1s odd and p is an odd prime, then
(5.4) 0:(Q) = 6.(€°) .

Proof. If p= —1(modn), the result follows from Theorems 5.2
and 5.3. If p#= —1(mod=n), let the g.c.d. of » and p+ 1 be d.
Then the g.c.d. of 2n and p +1 is 2d and p = —1(modd). Thus

0:(Q) = 02(@"%) = 0(@"'7) = 0,(QF).

THEOREM 5.5. If n is odd and the g.c.d. of p — 1 and n is e,
then

(5.5) 2:0(Q) = (1) + 2,(Q°) .

Proof. From equations (3.3), (3.4), and (3.6) we can write

‘Q2n(Q) = 11/‘41»(Q2n) = ¢‘2W(Q2n) + ¢2n(Q2n)
= Paa(Q@") + 2.(Q) .

By equation (8.5) v..(Q™) = 2(Q)*+¥2u(1) = ¥:.(1). Now applying the
reasoning used in Theorem 5.1 with ¢ a primitive root of p

(5.6)

M'!S

) = S g + 1)

s
[
e

I
M

5.7) (g™ + 1)

SR
Il
-

Il
s iM

, 2™ + 1)
= Ze(l) .

The result now follows from (5.6) and (5.7).
We can now state the basic tool for the evaluation of 4,,(@)
when 7 is odd.
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Combining the results of Theorem 5.4 and 5.5 along with Equation
2.3, we have

THEOREM 5.6. Assume n is odd., Let e be the g.c.d. of n and
p— 1, then

(5.8) A:0(Q) = 4,(Q°) + 39..(1) .
Applying Theorem 2.1 we can write
(5.9) 4:(Q) = x(Q)- 4,(1) + 39, (1) .

COROLLARY. If m is an odd prime, ptQ and p = 1 (mod n)
(5.10) 4(Q) = 2(@)-4,(1) — 1.

6. The evaluation of 4,(Q). The values of 4; (Q) depend upon
the decompositions p = 2* + 4y and p = A* + 3B* with the signs
selected so that x = 1 (mod 4), 2y = x (mod 3) and 4 = 1 (mod 3).

p # 1(mod 6). By the corollary to Theorem 5.6,

4(Q) = x(Q)-4(1) — 1.
Brewer {1] and Whiteman [14] have evaluated 4,1) = 4, with the
results
0 p = 3 (mod 4)
4y p = 5 (mod 12)
2 p=1(mod12) 3|z
—2¢x p=1(modl12) 3}tx.

(6.1) 4(1) =

Thus we have for 4,(Q) when p # 1 (mod 6).

(6.2) 44(Q) = X_(?dly i 2; i il(x(nrz(jdli;)
p = 1(mod 6). By Equation (5.9)

(6.3) 4(Q) = (@) 4s + 39(1) .
In this case (4.1) becomes

(6.4) Po(l) = _(1;- 3% {36(0, 20) — 36(0, 20 + 1)}

=0

The values for the 36(o, &) can be determined from tables such as those
given by Hall [4, p. 981] or computed directly using Equation (4.7)
which becomes
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5
(6.5) 36(0, k) = Z=o(—1)’”f«#(6’”, BB~
where 8 = exp (27i)/6. We can write

(6.6) WD) = = 3 (~1)m (8", B7) 3 (~ 1

The right side of (6.6) reduces to
= 3 (-1, B F (~ 18
= P(B’, £) + (—1)¥(5, )
+ (87, B%) + (=LY (B, B°) + ¥ (B, B°) + (—=1)/ (B, B°) .
By (4.3) and (4.4) we have
(=1)y9(8% B°) = ¥(B°, B = —
(B, BY) = (—1)/y(8*, BY)
(6.8) ¥(B2, B = ¥(8, BY)
¥(B*, BY) = (8, BY)
(8, B°) = (—1)/¥(8°, BY) .

(6.7)

Set
(B BY) = —A + BV =3

Then (5%, 8*) = —A — BV —
Dickson [2, p. 410] proved if (8, B) = —A + BV =3, then
A =1(mod3). We can now write

6.9) ¥e(l) = —2 — 24 + 2BV —3 — 24 — 2BV -3

= -—2—44
and by (4.5)
(6.10) p = (B, B)-v(8, BY) = A* + 8B*,
Combining (6.1), (6.3), and (6.9) we have
—1-24 p = T(mod 12)
(6.11) 4(Q) =4{—1— 24 + 2z-3(Q) p=1(mod12) 3|«

-1 - 24 — 22-4(Q) p=1(mod12) 3}z .
Using Equation (3.7), Equation (6.9) can be written in the form
(6.12) Wo(l) = 264(1) = —2 — 44 .

Thus we have
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(6.13) é(1) = —1 — 24
Which corresponds to the result of Von Schrutka [8].

7. The evaluation of A4,(Q). If p = &+ 49y = u® + 5, 4,(Q)
is expressed as a linear combination of u, X, U, V and W, where
X, U, V, and W are solutions of the pair of diophuntine equations

16p = X* + 50U°% + 50V* + 125W* and XW = V* —-4UV — U*.

Signs are selected so that X = 1(mod5), and « = « (mod 5) where
2 = 1 (mod 4).

» % 1(mod 10). Brewer [2] has evaluated 4,(Q), @ = m’ (mod p),
with the results

—4ap -y {m) p=1(mod20) 5ru
(7.1) 44Q) = { du-y(m)  p=9(mod20) 5}
0 otherwise .

These results together with the corollary to Theorem 5.6 gives us for
p % 1 (mod 10)

—1 + 4u-%(Q) = 9 (mod 20) 5}«
-1 otherwise .

(7-2) Aw(Q) = {

p = 1(mod 10). Say p = 10f + 1. By Equation (5.9)

(7.3) (@) = x(Q)+ 45 + Fie(1) .
Whiteman [10] has expressed the cyclotomic numbers of order ten as
linear combinations of p, X, U, V, and W, where X, U, V, and W are
solutions of the pair of diophantine equations 16p = X® + 5002 +
50V2+125W2and XW = V*— 4UV — U* with X=1 (mod 5). However,
rather than evaluating +,(1) directly from the cyclotomic numbers as
was done with +r4(1) in the case of 4,(@), it is more expeditions to
use (4.12). Thus (7.3) becomes
(7.4) 4(Q) = x(Q)- A1) + 5(B(i, 1) — 2f)
where ¢ is selected so that 49° = 1 (mod p). Let g" = 2(mod p) then
¢ = 4(mod p). Thus 4 is selected so that 27 + 4 = 0(mod p — 1).
Since (B(7,1) is periodic with respeet to ¢, we may write ¢ =
—2r (mod ¢). Whiteman [11, p. 101] gives the following values for
the B(i, 1):

5B(0,1) =p -2+ X

20B(1,1) =4p — 8 — X + 10U + 20V + 25W
(7.5) 20B(2,1) = 4p — 8 — X + 20U — 10V — 25W

20B(3,1) =4p — 8 — X — 20U + 10V —- 25W

20B(4,1) =4p -8 — X — 10U — 20V + 25W .
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Thus if p = 1 (mod 10) we have the following values

1Q)4(1) — 1+ X r = 0 (mod 5)
Q) 4,(1) + 3(—4 — X — 20U + 10V — 25W)
r = 1 (mod 5)
1(Q)- A1) + 3(—4 — X + 10U + 20V + 25W)
(7~6) Axo(Q) = r=2 (mod 5)
1(@) A1) + $(—4 — X — 10U — 20V + 25W)
r = 3 (mod 5)
Q) A1) + $(—4 — X 4+ 20U — 10V — 25W)
r = 4 (mod 5)

with the value of 4,(1) from (7.1)

—4u p = 1(mod20) and 5}«

A1) =
@ 0 otherwise .
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