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Let S denote the set of all infinite increasing sequences of
positive integers. For all A = {a,} and B = {b,} in S, define the
metric p(4, B) = 0if A = B, i.e,, if a. = b, for all w andp(A4, B) =
1/k otherwise, where k is the smallest value of n for which
ay #+ b,. Similar metrics have been considered previously [1, 2].

Our purpose here is to discuss several continuity properties
of the Schnirelmann density d(A) = inf A(n)/n, where A(n) is
the number of elements of A not exceeding ». In particular,
we obtain a characterization of the set of all sequences hav-
ing density zero as the set of points of continuity of d(A).

THEOREM 1. d(A) is upper semicontinuous on S.

Proof. For each ¢ > 0 there is a k such that A(k)/k < d(4) + e.
If o(4,, A) = 1/k,— 0, then k,— « and there is an N such that
k,>k foralln > N. Hence d(4,) < A,(k)/k = A(k)/k < d(A) + ¢ for
all » > N and the desired result follows.

Let L, ={AeS|d(4) =a} (0 <a =<1) denote the level sets of
d(A) and define M, = {Ae S|d(A) = a}. Also, let L, denote the closure
of L,.

THEOREM 2. L, = M,.

Prooy. If limp(A,, A) =0 and A, e L, for all n, then d(4) = lim
sup d(4,) = a by Theorem 1 and L, M,.

Now let B={b}e M, and d(B) =b=a > 0. Also, let 4 = {a,},
where a, =1 + [k — 1/a], and define B, = {b, +--, by, Qps1, gy *+*}-
Then an < A(n) < an + 1 and it follows that d(4) = a. Also, k =
B(b,)=bb, and b, < k/b <[k/b]+1<Z[k/a]l]+1=a,,,. Hence, B, is an
increasing sequence, and B,(n)/n = a for all » and k. Thus d(B,) =
lim Bi(n)/n = a and B,e L, for all k. Since lim p(B,, B) = 0, we have
M,c L, for a > 0.

Finally, if @ = 0 we define B, = {b,,---, b,, b%.,,, b2.,, ---}. Then it
is obvious that B, € L, and lim o(B,, B) =0. Hence M,c L, and L, = M,
for 0 <a <1,

COROLLARY. L, = S.

It follows from the above corollary and Theorem 1 that d(A4) is
continuous at A if and only if d(4) = 0. It also follows from Theorem
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2 that L, is closed if and only if ¢ =1 and it is easily shown that
L, is never open. However, it is a consequence of the following
theorem that L, is a G, set and that a desecription of the graph of
d(A) can be given [3].

THEOREM 3. d(A) is a function of Baire class one.
Proof. Let

d.(A) = inf % ,

1gksn

Then d,(4) = d,(B) if po(4, B) < 1/n and it follows that d,(4) is con-
tinuous (uniformly)on S. It remains to be shown that lim d,(4) = d(4)
for all Ae 8.

Now let &k, be the smallest value of k& for which d,(4) = A(k)/k.
Then limd,(A4) exists since d,(4)=d,;.(4) =0 for all n. Also,
d.(A) = Alk,)/k, = d(A) for all n. Hence limd,(A) = d(A). Since the
sequence {k,} is nondecreasing and these numbers are integers, we
have either k£, = k for all w = N or k, — . In the first case it is
clear that d,(4) = d(A) for all » = N and limd,(4) = d(4) Suppose
that k, — o=. Then A(k)/k = A(k,)/k, = d,(A) for all k < k,. Hence
A(k)k = limd,(4) for all £ and limd,(4) < d(A) since the sequence
{d.(A)} is nonincreasing. Thus limd,(4) = d(4) in this case also.
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