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Several authors have solved the Pythagorean functional
equation

(1) [ flx +ay) |2 = [ f@)|* + | fliy) 12,
where f is an entire function and x and y are real variables.

A simple computation shows that, if f is a solution of (1),
then f is also a solution of

(2) [fls+z) P+ [ fln—2) 2= fles + 22) 12+ | flzi—22) |2,

where z; and z; are complex variables. (If an entire function
vanishes at the origin and is a solution of (2), then it is a
solution of (1), and conversely.) If an entire function f is a
solution of Jensen’s functional equation

(3) o+ 22) + f&n — 22) = 2f(2) ,
where 2, and 2, are complex variables, then it is also a solu-
tion of

(4)  fa+tz)+ fles—2z) | = | fles + 2) + flan— Z) | .

In this paper we shall prove that a solution of (4) is always
a solution of (2). Then we shall solve certain functional in-
equalities derived from (2) and use the solutions to solve (1),
(2), (3), and (4).

See [2], [3], [1] concerning (1). We shall use the following two
lemmas to prove that (4) implies (2).

LEMMA 1. If f is an entire function of z, then 4|f(z)]* =
41 f'(2) | where 4 stands for the Laplacian 3*/0x® + 0*/oy® (z = = + ¥,
i=1—=1,,9 real). (See [4].)

Proof. Since this lemma is familiar, we omit the proof.

LEMMA 2. Suppose that f,g are entire functions of z. If
[f'(x)] =19'(R)| holds in |z| < + < and f(0) = g(0) = 0 holds, then
| f(2) | = 19(2)| holds in |z| < + <o.

Proof. Since f, g are entire functions of z and |f'(z)| = |¢'(2) |
holds in {z]| < + oo, we have f'(z) = €“¢g’(z) in [z| < + o where @ is
a real constant. So, by the assumption f(0) = ¢g(0) = 0 we have f(z) =
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e’g(z) in [z2] < +co. So we have |f(z)| = |g()| in |z| < + oo,
We shall prove that (4) implies (2) if f is an entire function of z.
By (4) we have

(5) 1f (2 4+ 2) + R —2) = [f(es + %) + 2 — %) .

Taking the Laplacian 0%*0s® + ¢°/6t* of both sides of (5) with
respect to z,(z, = s + it,% = V' —1, s, t real), by Lemma 1 we have

41.7“(21 +2) + f(2 — %) lz = 4|f’(z1 + Z) + f(2 — Zy) Iz .
Hence
(6) | [y + ) + f7(2 — )| = | f"(7 + 2) + (7 — Z) | .

When z, is arbitrarily fixed, f(z, + 2) — f(z, — 2,) and f(z, + z,) —
f(z, — 7,) are entire functions of z, with (f(z, + 2) — f(2, — 2))).,-0 =
(f(r + %) — f(z — E2))22:0 = 0 and by (6)

(f(zl + E2) - f(zl - E2)) N

aa (f(o + 2) — £z ~ 22)
Z,

:' 0
0%,
Hence, by Lemma 2

]f(z1+22)—f(zz—22)1:]f(zl+zz)_f(z1—z2)!~

So, we have
(7) | [+ 2) — fi—2) P =[S(2 +2) — fee— %) "
Adding (5), (7) and using the parallelogram identity | @ + b|* +
la —b)P=2|al®*+ 2|0 (a, b complex), we have
2ifEat+z) P +2[ /G- =2{ i +2)+2]f(e.—2)].

Hence (4) implies (2) if f is an entire function.
So, if (1) or (3) holds, then (2) holds. But the converse is not

true as the example f(2) = cosz shows.
Now, we consider the following two functional inequalities where
2,, %, are complex variables:

(8) [fEa+z)PF+|fE - =[/a+2) +|f(—2)]
with |2, | < +c and Im (2} = 0,
(9) [ +z)P+fE—2) = fa+2))+ | (e —2)f

with |z, | < +c and Im (2} = 0.
In this paper we shall solve the two functional inequalities (8),
(9) which are extensions of (2), and then by the results obtained we
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shall solve the functional equations (1), (2), (3), (4). Our results are
extensions of the result of E. Hille (see [2]).

2. Solutions of (8) and (9). We shall use the following lemma:

LEMMA 3. Suppose that H s an entire function. If A(t) =
| H(te*) |* where t, p are real and ¢ is fived, then we have

A"(0) = 2Re (¢**H"(0)H(0)) + 2 | H'(0) *.
Proof. Since it is easy, we omit it.

THEOREM 1. Amn entire function f is a solution of the functional
inequality (8) if and only if

f®) = asin h((B + ©7)z) + bcos h((B + i7)z)

or f(z) = az + b where a,b are arbitrary complex constants and B,
are nonnegative real constants.

Proof. Putting z, = te’” in (8) where t, » are real and ¢ is fixed
with 0 < @ < /2, we have

[z +te) [P+ | f (2 —te®) P < | f (2 + te™™) P 4 | fz — te ™) |°.
Then, for each fixed z (complex),
p(t) = |z +te™) [+ | f(z—te ™) " — | f(z + te¥) ? — | f(z — te™) |*

is a twice differentiable function of the real variable ¢ which has a
minimum at ¢ =0 (p(0) = 0). Hence, p”(0) = 0. It follows from
Lemma 3 that 8sin 2¢p Im (f”(2)f(z)) = 0 for each complex number z,
and since sin2p > 0, this implies that

(10) Im (f"(2)f(2)) = 0.

We may assume that f(2) # 0. Then it follows from (10) that
Im (f"(2)/f(2)) = 0 in the domain where f(z) # 0. Since f”(2)/f(2)
is a meromorphic function and the set of zeros of f(z) is countable,
it follows from Picard’s little theorem that f”(z)/f(z) = A for all z
where A is a complex constant such that Im (4) > 0. The solutions
of this differential equation are precisely those functions listed in
Theorem 1.

Conversely, we shall prove that these two functions satisfy (8).

First, let us prove that f(z) = a sin 2((8 + i7)2) + b cos h((B + i7)z)
satisfies (8).

By the parallelogram identity we have
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| f (@ + te®) P+ | fla— tem) P
1) = (1 f@+ te) + flm — o)
+ 1 £ + te™%) — f& — te) )
| S+ te) P+ | fla— te) |
(12) = (1 F@ + to") + f(a — te)
+ 1+ t6%) = fla— te) )

where 0 < ¢ < 7/2.
On the other hand
| f (& + te7™) + f(z — te™™) ' — | (2 + te¥) + [z — te¥) [
(13) =4 |asin k(B + t7)z) + bcos h((B + i7)z)
X (] eos h{(B + Z'V)te““’) [ — |eos h((B + iv)te™) Py .

Since | cos h(c + id) |* = cos? hc — sin® d where ¢, d are arbitrary real
numbers, we have

[cos h((B + iv)te™™) 2 — | cos h((B + i7)te™) |2

= cos? h{Bt cos @ + 7t sin ¢) — sin® (— Bt sin ¢ + 7t cos @)
— cos? h(Bt cos ¢ — 7t sin @) + sin® (Bt sin @ + vt cos )

= 4 8in h(Bt cos @) cos k(B cos @) sin k(vt sin @) cos h(7t sin @)
+ 4 sin (Bt sin @) cos (Bt sin @) sin (7t cos @) cos (vt cos @)

= sin h(2¢ cos @) sin h(27t sin ) + sin (28t sin @) sin (27t cos ) .

(14)

Here we may assume that ¢ = 0. Since sinZz =z in z = 0, by
B=0,7=0,t=0,cosp = 0,sinp = 0 we have

(15) sin i(28t cos @) = 2Btcosp = 0,
(16) sin h(2vtsinp) = 2vésingp = 0,
By (15), (16)
amn sin h(28t cos @) sin (27t sin @) = 487E cos p sin @ .

Since = |sinz| in =0, by 8=0,v=0,¢=0, cosp =0,
singp = 0 we have

(18) 2Bt sin ¢ = |sin (28t sing) |,
(19) 27t cos @ = |sin (27t cos p) | .

By (18), (19) we have
(20) 4/87t* sin @ cos @ = |sin (25t sin @) sin (27¢ cos @) | .
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Further we have

| sin (28t sin ) sin (27t cos @) |

1) = —sin (26¢ sin @) sin (27 cos @) .
By (17), (20), (21)

sin (28t cos @) sin h(27¢ sin @)

(22) . . .
+ sin (268t sin @) sin (27t cos ) = 0 .
By (13), (14), (22) we have

| [z + te™) + [z, — te™) !

(23) i e
= | [z + te®) + f(z, — te) .
Next we have

Fla 1) — f(s — te ) [ — | Fa + t6¥) — Fla, — te¥)
(24) = 4 [acos h((8 + i7)z) + bsin k(B + iV)z,)
X (|sink (B + iv)te=) [* — |sin h((B + i7)te™) ) .

Since |sin Z(¢ + id) |* = cos® he + sin*d — 1, by the same way as
in (14)

(25) ' |sin A((B +.i7)te“i4’) ['2 — |sin @((B + i'“/)tei“’) ;
= sin h(26¢ cos @) sin A(27t sin ) — sin (28t sin @) sin (27t cos @) .
By replacing (21) by
| sin (28t sin @) sin (27¢ cos @) | = sin (25t sin @) sin (27¢ cos @)
in the above calculation from (15) to (22) we have

sin ~(28t cos @) sin A(27t sin @)

(26) . . .
— sin (28t sin @) sin (2vt cos @) = 0 .
By (24), (25), (26) we have

| [+ te™) — [z — te™™)
= | fe + te”) — [z — te) .

By (11), (12), (23), (27), we can conclude that
f(z) = asinh((8 + i7)z) + becos h((B + i7)z)

(27)

satisfies (8).
Next, when f(2) = az + b, we have

if(zl+zz)|2+|f(zl‘"zz)i2:|f(zl+gz)]2+|f(zl_§2)|2

in |2,] < +o and in |2,| < +co. Thus the theorem is proved.
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THEOREM 2. Awn entire function f is a solution of (9) if and
only if f(z) = asinh((B — i7)z) + beosh((B — iV)2) or f() =az+ b
where a, b are arbitrary complex constants and B,7 are nonnegative
real constants.

Proof. Putting f*(z) = f&), f*(z) is an entire function of z. By
(9) f*(z) satisfies the following functional inequality:

| f*R+ 2) P+ [ (20— 20) P
g[f*(zl+z2){2+|f*(zl_22)127

where z,, z, are complex variables with [z, | < + o and Im (23 = 0.
Hence, by (9') and by Theorem 1 the theorem is proved.

By Theorem 1 we can solve (1), (2), (3), (4). An entire function f is
a solution of (1) if and only if f(z) = asinaz or f(z) = a sin haz or
S (z) = az where «a is an arbitrary complex constant and « is an arbitrary
real constant.

An entire function f is a solution of (2) or (4) if and only if
f(®) =asinaz + bcosaz or f(z) =asinhaz + bcoshaz or f(z) =
az + b where a,b are arbitrary complex constants and « is an arbi-
trary real constant.

I wish to thank the referee for his many helpful suggestion.

(9)
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