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For m ^ k, an (m, k) system is a set of A>tuples (A -subsets)
of 1,2, , m. A minimal (m, k) system is an (m, k) system with
the property that every (k — l)-tuple of the m elements appears
in at least one &-tuple of the system, but no system with fewer
^-tuples has this property. The numbers of fe-tuples in a
minimal (m, k) system will be denoted by Nk(m). A maximal
(m, k) is an (m, k) system with the property that no (k — l)-tuple
appears in more than one &-tuple of the system, but no system
with more A -tuples has this property. The number of A -tuples
in a maximal (m, k) system is Dk(m). In this paper we shall be
concerned with evaluating Nk and Dk and investigating the
properties of extremal (m, k) systems for k — 2, 3, and 4.

In § 2 we dispose of the trivial case k = 2, and give inductive
upper and lower bounds for Dk and Nk. In §3 and §4 we discuss
systems of triples and quadruples.

2. Bounds for Nk and Dk. It is easy to see that

D2(2m) = N2(2m) = D2(2m + 1) = N2(2m - 1) = m .

In the first three cases, the m pairs

(1,2), (3, 4), . . . , ( 2 m - l , 2 m )

form extremal systems. In the fourth case, replace the last pair by
(2m - 1,1).

Theorems 1 and 2 below provide inductive bounds for Nk and Dk

with k ;> 3. The bounds in Theorem 1 are best possible in most of
the cases we consider, but those of Theorem 2 are not usually as
good.

THEOREM 1. Dk(m) ^ mDk_γ(m — l)/k; Nk(m) Ξ> mNk^(m — l)/k.

Proof. Consider the λ -tuples (α1? α2, , ak) which contain a

specified element αx in a maximal (m, k) system. Since no (k — 1)-

tuple is repeated, the (k — l)-tuples (α2, •• ,αA.) contain no repeated

(k — 2)-tuples. Thus at occurs in at most Dk^m — 1) λ -tuples. There

are m elements in all, and they appear k to a block. Thus a maximal

(m, k) system contains at most mD^m — l)/k blocks. Similarly in
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a minimal (m, k) system each element occurs in at least iV/c_1(m — 1)
blocks, and the theorem follows.

THEOREM 2. Dk(m) ̂  Dk(m + 1) - D^im);
Nk(vι) ^ Nk(m - 1) 4- Nk^(m - 1).

Proof. Let Sx be a mininal (m — 1, k) system, and let T1 be a
minimal (m — 1, k — 1) system. We add to Sλ a new element x and
A -tuples (x, au , α^-i) where (au , αA;_1) runs through all (k — 1)-
tuples of ϊ\. The resulting (m, A:) system contains JSΓfc(ra — 1) +
Njc^im — 1) blocks, and every (k — l)-tuple appears in at least one
block. Thus Nk(m)^Nk(m - 1) + Nk^(m - 1).

Similarly, if S2 is a maximal (m + 1, ά) system, delete all blocks
of S2 containing a specified element. By the argument in Theorem 1,
an element occurs in at most Dk_1(m) blocks of S2, and there remain
at least Dk(m + 1) — D&_i(m) blocks with no repeated (k — l)-tuple.
Thus Dk(m) ^ Dk+1(m + 1) - Dk^(m).

If Nk(m) = Dk(m), an extremal (m, k) system has the property
that every (k — l)-tuple belongs to exactly one A -tuple of the system.
Then the ^-tuples form a Steiner system S(k — 1, k, m). Properties
of Steiner triple and quadruple systems are useful in discussing cases
k = 3 and k = 4 in the next two sections.

3* Systems of triples. For k = 3, the bounds given by Theorem
1 are the best possible in all but one case which is considered in
Lemma 1. Fort and Hedlund [2] have evaluated Na(m), and their
results are summarized in Theorem 3. D3(m) is evaluated in Theorem
4, and some properties of maximal (m, 3) systems are obtained.

LEMMA 1. Dz(m) ̂  (m2 - m - 8)/6 for m = 5(mod 6).

Proof. Suppose that Dz(m) = (m2 — m — 2)/6, the largest value

possible by Theorem 1. Since [oj — 3(m2 — m — 2)/6 = 1 and no pair of

elements appears in two triples, exactly one pair (1,2) does not occur
in any triple of a maximal system. Then 1 occurs in triples with 3,
4 , m, and for m odd this requires at least (m — l)/2 triples. Thus
some pair (1, x) with x ^ 3 will be repeated. This is a contradiction,
and consequently D3(m) rg (m2 — m — 8)/6.

THEOREM 3. (Fort and Hedlund).

Ίn2/6 if m = 6k

ΛΓ3(m) -
m(m - l)/6 if m = 6k + 1 or 6& + 3

(m2 + 2)/6 if m = 6fc + 2 or 6k + 4

(m2 - m + 4)/6 if m = 6A: + 5 .
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Furthermore, minimal (m, 3) systems have the following properties:
( i ) Ifm = 6k,Zk disjoint pairs (1, 2), (3, 4), , (6A; - 1, 6k)

occur twice and every other pair belongs to just one triple.
(ii) // m = 6k + 2 or 6k + 4, m/2 + 1 pairs (1, 2), (1, 3), (1, 4),

(5, 6), (7, 8), , (m — 1, m) occur twice, and every other pair belongs
to just one triple.

(iii) // m = 6k + 5, one pair occurs in three triples, and every
other pair belongs to just one triple.

Reiss [4] has proved that Steiner triple systems S(2, 3, m) exist
for m = 6k + 1 or 6k + 3, and then Nz(m) = m{m — l)/6. Theorems 1
and 2 now give N3(m) = (m2 + 2)/6 for m = 6fc + 2 or 6/c + 4. Of
the two cases remaining, m = 6k + 5 seems to be the more difficult;
a construction for a minimal (m, 3) system is given in [2]. Fort and
Hedlund construct a minimal (m, 3) system for m = 0 (mod 6) by
modifying a minimal (m — 1, 3) system. It is perhaps worth nothing
that a minimal (m, 3) system may also be obtained from a Steiner
triple system S(2, 3, m — 3). Adding modulo 2t + 1 to the 3ί + 1
initial blocks

(ίL, (2ί + 1 - i\, 02), (i2f (2ί + 1 - i)a, 03), (i3, (2ί + 1 - i)3> 0L)

(i = 1,2, . . . , ί )

(Ox, 02, 08)

gives, by Bose's first module theorem [1], the (St + l)(2ί + 1) blocks
of a triple system on 6t + 3 elements. The blocks generated by (0j,
02,03) are disjoint and contain every element once. Delete these
blocks from the system; add new elements x19 x2, x3 and triples

(Xl9 %i, %z), \%ι, X2y %), ('Z'I, Ί?, X3) I = \J,L, ' ' , Δt

(xj, (2i)j, (2i + 1),) i - 0, 1, . , t - 1; j = 1, 2, 3

(x2, x3, (2ί)3), (xί9 x2, (2t)2), (xz, xL, (2ί)0

Every pair occurs at least once, and, the numer of triples is

(3ί + l)(2ί + 1) - (2ί + 1) + 3(2ί + 1) + 3ί + 3 - m2/6

where m = 6t + 6. Thus JV3(m) = m2/6 for m = 6k.

THEOREM 4.

m(m — 2)/6 if m = 6k or 6k 4- 2

m(m - l)/6 i/ m = 6k + 1 or 6k + 3

(m
2
 - 2m - 2)/6 i/ m = 6A; + 4

(m
2
 - m - 8)/6 if m = 6k -\- 5 .
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Furthermore, maximal (m, 3) systems have the following properties:
( i ) If m = 6k or 6k + 2, ra/2 pairs (1, 2), (3, 4), • , (m - 1, m)

do not occur in any triple, and every other pair appears once.
(ii) // m = 6k + 4, 3k + 3 pairs (1, 2), (1, 3), (1, 4), (5, 6), (7, 8),

• , (m — 1, m) do not appear in any triple, and every other appears
once.

(iii) If m = 6k + 5, four pairs (1, 2), (1, 3), (2, 4), (3, 4), do not
appear in any triple, and every other pair appears once.

Proof. The existence of S(2, 3, m) for m Ξ 1 or 3 (mod 6) estab-
lishes Dim) — m{m — l)/6 in these cases. Now Theorems 1 and 2
together imply that D3(m) = m{m — 2)/6 for m = 1 or 3(mod 6).

In the remaining two cases, the values stated are the largest
possible by Theorem 1 and Lemma 1. We need only show that there
exist (m, 3) systems with the given numbers of triples and no repeated
pairs. In each case we take m = 5 (mod 6) and begin with a minimal
(m, 3) system with (m2 — m + 4)/6 triples (see [2] for a construction).
There exists a pair (1, 2) which appears in three triples, and every other
pair appears in one triple (Theorem 3 (iii)). Deleting two of the blocks
containing (1, 2), we obtain (m2 — m — 8)/6 blocks with no repeated
pairs, and thus

Dim) = (m2 - m -8)/6

for m = 5(mod 6). Deleting all (m + l)/2 triples containing the element
1, we obtain (m2 — 4m + l)/6 triples of m — 1 elements with no
repeated pairs. Thus

Dim - 1) = (m2 - 4m + l)/6 = ((m - I)2 - 2(m - 1) - 2)/6

f or m — 1 = 4(mod 6), as required.
Properties (i), (ii), and (iii) in Theorem 4 (and in Theorem 3) follow

from the observation that the number of pairs involving a specified
element in an (m, 3) system must be even. Each element belongs to
m — 1 different pairs. If m is even, m — 1 is odd, and thus each
element belongs to an odd number of the pairs which do not occur in a
maximal (m, 3) system (and to an odd number of the repeated pairs in
a minimal (m, 3) system). For example, if m = 4(mod 6), exactly
(o ) — 3(^2 ~ 2m — 2) = m/2 + 1 pairs do not appear in any triple of
a maximal (m, 3) system. These pairs contain a total of m + 2 ele-
ments, and each of the m elements belongs to an odd number of pairs.
Thus one element belongs to three of the pairs and every other element
belongs to just one pair. If the elements are suitably named, the
pairs which do not appear in any triple will be as stated in (ii). Parts
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(i) and (iii) are proved similarly.

Results on extremal (m, k) systems have proved useful in a recent
investigation of the covering properties of finite Abelian groups [5].
In this connection it is sometimes necessary to obtain all possible
extremal (m, k) systems. This is a very difficult problem, and we
wish only to remark that the construction suggested in Theorem 2
yields all possible maximal (m, 3) systems for m = 0 or 2(mod 6); for
in the light of Theorem 4 (ii), it is always possible to add a new
element x and triples (x, 1, 2), (x, 3,4), , (x, m — 1, m) to obtain a
Steiner triple system S(2,3, m + 1). Thus every maximal (m, 3)
system with m = 0 or 2(mod 6) can be obtained by deleting blocks
from Steiner systems S(2, 3, ra + 1).

4* Systems of quadruples* Hanani [4] has shown that Steiner
quadruple systems S(3, 4, m) exist for m = 2 or 4(mod 6). Thus
JV4(m) = Dim) = m(m - l)(m - l)(m - 2)/24 for m = 2 or 4(mod 6).
Now Theorems 1 and 2 together establish the values of D4(m) for
m = 1 or 3(mod6), and of N4(m) for m = 3 or 5(mod6). (It is neces-
sary to adjust the bound provided by Theorem 1 for N4(m) with m = 3
or 5 so that it is an integer). We have

THEOREM 5.

m(m - l)(m - 2)/24 if m = 6k + 2 or 6k + 4
N (m) =

4V J ((m3 - 2m2 + 3m 4- 6)/24 if m = 6k + S or 6k + 5

[m{m - l)(m - 2)/24 if m = 6k + 2 or 6k + 4
κ J \m(m - l)(m - 3)/24 i/ m = 6A: + 1 or 6Λ + 3 .

In Theorem 6 below we investigate the properties of some extremal
(m, 4) systems. Note that Theorem 6 (i) implies that all maximal
(m, 4) systems with m = 1 or 3(mod 6) are constructed by Theorem 2;
for given a maximal (m, 4) system, it is always possible to add quad-
ruples {x, α, 6, c), where (α, 6, c) runs over all nonoccurring triples, to
get a quadruple system S(3, 4, m + 1). Thus every maximal (m, 4)
system with m = 1 or 3(mod 6) may be obtained by deleting blocks
from a Steiner system S(3, 4, m + 1) as in Theorem 2.

THEOREM 6. ( i ) In a maximal (m, 4) system with m = 1 or
3(mod 6), the m(m — l)/6 triples which do not occur in any quadruple
form a Steiner triple system S(2, 3, m).

(ii) In a minimal (m, 4) system with m = 3 or 5(mod6), exactly
(m2 + m + 6)/6 triples appear in two quadruples, and every other
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triple appears in one quadruple. Furthermore (m + 3)/2 pairs (1, 2),
(1, 3), (1, 4), (1, 5), (6, 7), (8, 9), , (m — 1, m) appear in three repeated
triples each, while every other pair belongs to just one repeated triple.

Proof. In an (m, 4) system each pair appears in an even number
of triples. The number of different triples containing a given pair
is m — 2, which is odd if m is odd. Thus a given pair belongs to
an odd number of triples which do not occur in a maximal (m, 4)
system, and to an odd number of repeated triples in a minimal (m, 4)
system.

( i ) In a maximal (m, 4) system with m = 1 or 3(mod 6), there

are (™j - Am(m — l)(m - 3)/24 = m(m - l)/6 repeated triples, and

these contain ί7^) pairs of elements. Since each pair of elements be-

longs to an odd number of these triples, each of the o ) different
\ Δ J

pairs must belong to exactly one of these repeated triples. Thus the
repeated triples from a Steiner triple system S(2, 3, m).

(ii) The number of elements occurring in blocks of a minimal
(m, 4) system with m = 3 or 5(mod 6) is 4(m3 — 2m2 + 3m + 6)/24 =
m(m2 — 2m + 3)/6 + 1. Every triple appears in some quadruple, so
each elements occurs in at least Nz{m — 1) = (m2 — 2m + 3)/6 blocks.
Thus one element 1 appears in (m2 — 2m + 9)/6 blocks, and each of the
remaining elements 2,3, •• , m appears in iV3(m — 1) blocks. By
Theorem 3 (ii), the repeated triples involving element a Φ 1 are

(α, al9 α2), (α, aί9 α3), (a, al9 α4), (α, α5, αβ), (α, α7, α8), , (α, αm_2, αw_x)

where

{α, α l f , αm_x} = {1, 2, - , m} .

Thus each element a Φ 1 belongs to exactly one pair (α, αx) which
occurs in three repeated triples (all different), and every other pair
containing a appears in one repeated triple. Since every pair contains
an element a Φ 1, no pair appears in more than three repeated triples,
and no triple is repeated more than once. The number of repeated
triples is

4(m3 - 2m2 + 3m + 6)/24 - m(m - l)(m - 2)/6

= (m2 + m + 6)/6 - (™) + m + 3 .

Thus exactly (m + 3)/2 pairs belong to three repeated triples, and each
remaining pair belongs to one repeated triple. But (m + 3)/2 pairs
contain m + 3 elements, and each of 2, 3, , m occurs in one pair.
Thus 1 occurs in four pairs (1, 2), (1, 3), (1, 4), (1, 5) and every other
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element occurs in just one pair. The remaining pairs which occur in
three repeated triples are (6, 7), (8, 9), , (m — 1, m), and the theorem
follows.

We now discuss the case m = 6k. In Theorem 7 we show that
the bounds provided by Theorem 1 for D4(6k) and N4(6k) are exact for
infinitely many k values. It seems likely that this is so for all k
values but we are unable to prove this at present.

We first show that D4(6) = 3 and JV4(6) = 6. Since these are the
extreme values allowed in Theorem 1, we need only construct ex-
tremal (6, 4) systems. It is easy to verify that the three quadruples

(1, 2, 3, 4), (1, 2, 5, 6), (3, 4, 5, 6)

form a maximal (6, 4) system, and the six quadruples

(1,2, 3, 4), (1,2, 3, 5), (1,2, 3, 6)

(4, 5, 6, 1), (4, 5, 6, 2), (4, 5, 6, 3)

form a minimal (6, 4) system.
In the proof of theorem 7 we shall require the following Lemma

due to Reiss [4]:

LEMMA (Reiss). The n(2n — 1) pairs of 2n elements may be parti-
tioned into 2n — 1 sets Sly S2, , S2n-i, each containing n disjoint
pairs.

Proof. Put lij = i + j — l(mod 2n — 1) where 1 <̂  ΐ, j , liβ <,2n — l,
and define lii2n = l{i (i = 1, 2, . , 2n - 1). Then take

Sq = {(l,i), i < j , li3 = q} (q = 1, 2, . . . , 2n - 1) .

It is easy to check that these sets have the required property.

THEOREM 7.

N4(m) = m(m2 - 3m + 6)/24 and D4{m) = m(m2 - 3m - 6)/24

for m = 2% 6 (n = 0, 1, 2, - -) .

Proof. We have shown that JD4(6) and ΛΓ4(6) are as stated in the
theorem. We assume the results for m = 6ί and prove them for
m = 12ί. Put Aj - {(i, j), 1 ^ i ^ 6t} 0* = 1, 2), so that A = Ax U Aa

contains 12t elements. Partition the pairs of elements of Ad into
sets Si, S{, , Sit-i as in the Reiss Lemma (j — 1, 2). For each q = 1,
2, , 6ί — 1, form the (3£)2 quadruples

1? 2)(δ2, 2)
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where (au l)(α2,1) runs through all 3£ pairs of Sq, and (bly 2)(δ2, 2) runs
through all 3ί pairs of S*. This gives a set T of (6t - 1)(3£)2 quadru-
ples with the property that very triple (cu ί)(c2, j)(c9, k) with elements
from both Aι and A2 appears in exactly one quadruple of T.

Now add to Γ a minimal (6£, 4) system on the elements of Aά

(j = 1, 2). Every triple appears in at least one quadruple, and thus

^ (6ί - 1)(3£)2 + 2(6ί)(36ί* - 18ί + 6)/24

= m(m2 - 3m + 6)/24

where m = 12ί. Since this is also the smallest value permitted by
Theorem 1, Theorem 7 follows for iV4(m).

Alternatively, add to T a maximal (6ί, 4) system on the elements
of Ay (j = 1, 2). No triple occurs in more than one quadruple, and
thus

S (6ί - l)(3ί)2 + 2(6ί)(36ί8 - 18ί - 6)/24

= m(m2 - 3m - 6)/24

where m = 12t. This is also the largest value permitted by Theorem
1, and the proof of Theorem 7 is complete.

It is possible to prove that the bounds given in Theorem 1 for
D4(6k) and N4(6k) are exact for many other values of k as well, and
it is likely that Theorem 7 holds for all m^0(mod6). We now
discuss some of the properties of (6k, 4) systems.

First suppose that m = 6k and D4(m) = m(m2 — 3m — 6)/24. By
the argument in Theorem 1, each element in a maximal (m, 4) system
occurs in at most D3(m — 1) = (m2 — 3m — 6)/24 triples. It follows
that each element occurs in exactly Dz(m — 1) triples. By Theorem
4 (iii), the triples containing 1 which do not occur in any quadruple
are (1, 2, 4), (1, 3, 4), (1, 2, 5), (1, 3, 5). Applying Theorem 4 (iii) again,
the triples containing 2 which do not occur must be (2, 4, 1), (2, 5, 1)
(2, 4, 6), and (2, 5, 6). Continuing, we find that the eight triples

(1, 2, 4), (1, 3, 4), (1, 2, 5), (1, 3, 5), (2, 4, 6), (2, 5, 6), (3, 4, 6), (3, 5, 6)

do not occur, and every other triple involving 1,2,3,4,5, or 6
appears in exactly one quadruple. It is thus possible to partition the
6k elements into k sets Al9 A2, , Ak of six elements each such that
every triple containing elements of more than one set Aό occurs in
some quadruple, and exactly eight triples whose elements all belong
to Aj do not occur (j = 1, 2, , k).

Next suppose that JV4(m) = m(m2 — 3m + 6)/6 where m = 6k.
Using Theorem 3 (iii) and arguments similar to those in the preceding
paragraph, we find that in a minimal (m, 4) system, m/3 disjoint
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triples

(1, 2, 3), (4, 5, 6), . . . , ( m - 2 , m - l , m )

occur in three quadruples each, and every other triple appears once.
These structural properties are proving quite useful in our attempts
to construct minimal and maximal (m, 4) system.

At present very little is known about the remaining cases
Ni(6k + 1) and £)4(6k — 1). The bounds provided by Theorems 1 and
2 differ by about Sk/2 in each case, and we are unable to improve
them in general. We give one result in Theorem 8 which shows that
the bound given by Theorem 1 for ΛΓ4(7) is not the best possible.
However we have been unable to generalize the argument to
N,(6k + 1) for k > 1.

THEOREM 8. ΛΓ4(7) = 12.

Proof. Theorems 1 and 2 imply 11 ̂  7V4(7) <Ξ 12. Suppose that
iV4(7) = 11. The 11 quadruples contain 44 = 6.7 + 2 elements, and
each element appears in at least JV3(6) = 6 blocks. Thus at least five
elements appear in exactly six blocks. If 1 is such an element, the
repeated triples containing 1 are (1, 2, 3), (1, 4, 5), and (1, 6, 7) by
Theorem 3 (i). Every triple contains one such element, and thus all
repeated triples are different (each triple appears in one quadruple or
two). Furthermore no pair containing 1 belongs to more than one

(7\
o ) = 9 repeated triples contain-

— 21 pairs in all. The only pair
which can appear in more than one triple is the exceptional pair (α, b)
where a and b appear in 7 blocks each. Thus the pair (α, b) occurs
in 7 blocks, and some triple (α, 6, c) is repeated twice. This is impos-
sible, and it follows that JV4(7) = 12.

Note added in proof. Two papers by J. Sehonheim on this pro-
blem have recently come to our attention, through the SIAM conference
on Combinatorics in Santa Barbara (December, 1967). In the first of
these (On coverings, Pacific J. Math. 14 (1964), 1405-1411) results for
Nk(m) similar to those of Theorems 1, 2 and 5 were given. In the
second (On Maximal Systems of ^-tuples, Studia Scientiarium Math.
Hungarica 1 (1966), 363-368) will be found results for Dk(m) similar
to those of Theorems 1, 2, and 5, and the first part of Theorem 4.
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