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Let P(z) be a polynomial whose zercs z;,,2:, +*+,2, (n = 2)
lie in |z| = 1. It is shown that P/(z) always has a zero in
lz—z|=1if |z;]=1o0orif |z2,] <1 and n = 38,4.

In his book Research Problems in Function Theory [2] W. K.
Hayman mentions the following problem due to L. Ilyeff (Problem
4.5, p. 25): Let P(z) be a polynomial whose zeros z,, 2, -+ +, 2, (n = 2)
lie in |z| < 1. Is it true that P’(z) always has a zeroin |z — 2, | < 1?

In this note we answer this question in the affirmative if |z,| =1
for arbitrary # and if |z,| < 1 for n = 3,4. The case n = 2 is trivial.

We also show that the disk |z — 2,| < 1 always contains a zero
of P’(z) regardless of the location of the zeros if | P'(z)]| < n and if
the polynomial P(z) is normalized to be a monic polynomial.

2. The boundary case.

THEOREM 1. Let P(z) be a polynomial whose 2eros 2z, 2y *++, 2,
n=2) liein |2] <1 such that |2,| = 1. Then thedisk |z —z | <1
always contains a zero of P'(z). Furthermore the disk |z — 2,| <1
always contains a zero of P'(z) except when P(z) = c(z” — €Y).

Proof. Without loss of generality we may assume that z, =1,
2,1 for £k=2,3,---,n and P’(1) =1. We shall show that the
polynomial P’(z + 1) has at least one zero in the closed unit disk. If
this is not so then the following representation of P’(z + 1) is possible
[1] for |2z] < 1.

(1) P'(z +1) = (1 — 2f())"™

where f(z) is analytic in the unit disk and less than one in modulus.
From (1) by differentiation we obtain

(2) P(1) = (1 —n)f(0) .

The polynomial Q(z) defined by the relation P(z) = (z — 1)Q(z) satisfies
Q1) = P'1) =1 and 2Q'(1) = P”"(1). Hence applying (2) we obtain
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from which we deduce that |Q'(1)| < (n — 1)/2. On the other hand
since |z,| < 1,Rel/(1 —2,) = 1/2 and thus Re Q'(1) = (» — 1)/2. This
contradiction proves the theorem.

To prove the second part of the theorem we observe that | f(z)| <1
even if P’(z + 1) = 0 for |z| < 1, so that in this case we also obtain
a contradiction unless all the z, lie on the unit circumference and f(z)
is a constant of absolute value one. This implies that P(z) has all
its zeros on the unit circumference such that P’(z) has an (n — 1)
fold zero on the circle |z — 1] = 1.

3. Third and fourth degree polynomials.

THEOREM 2. Let P(z) be a polynomial of degree three or four
whose zeros lie tn the closed wunit disk. Then any circle of radius
one about a zero of P(z) contains a zero of P'(z).

Proof. We may assume that P(z) = (z — x)Q(z), where 0 < v <1
and the zeros 2,k =1,2,---,n of Q(z) lie in |z| < 1. We shall
prove that the polynomial f(z) = P'(z + x) has a zero in |z| < 1.

Consider the following polynomials

£ = 30 + 2@

and

h(z) = Zn‘ QU () 2k
=0 k!

By a result due to Szego [4] every zero v of h(z) has the form v =
—af, where B is a zero of g(z) and « is a point belonging to a circular
region containing all the zeros of f(z). The zeros of g(z) have the
form 8= —1+"*¥1 suchthat 8+ 0. Forn =2,3 |B|=1V2. If
f(®) #0 in |2] <1 we may choose a such that |a|=1. Thus
|v| =1V 2. Since h(z) = Q(z + ) and f(2) = P'(z + @) it follows that
all the zeros of Q(z) satisfy |2/ <1 and |z — 2| =12 and no zero
of P'(z) lies in |z — x| < 1.

Consider now the polynomial R(z) = P(z — 1 + 2) = (z — 1)Q.(?),
where Q,(?) = Q( — 1 + x). No zero of R'(z) lies in |z — 1| < 1. By
Theorem 1 we shall obtain a contradiction if we can show that all
the zeros of Q,(z) lie in |z| < 1. Indeed the zeros of Q,(z) satisfy the
inequalities |z — 1+ 2| <1 and |z — 1| =V 2. A straightforward
calculation shows that if z = w + v these inequalities imply



ON A PROBLEM OF ILYEFF 161
u2+v2§3—<x+-1—><1
x
for 0 < & < 1. This completes the proof.

4. A particular class of polynomials.

THEOREM 8. Let PR)=2"+a, 2"+ -+~ +a,. If P(r)=20
and | P'(z)| < m, then P'(z) has a zero in |z — z,| < 1.

Proof. Write P(z) = (z — 2)Q() and set f(z) = P'(z + z) and
£*@) = 2»'f(1/2). We have f(e¥) = f*(¢") and

f@) =n"" + - 4+ Qz)
FH52) = Q@)z™ + ++r + m.

If Q(z) # 0 the polynomial nf*(z) — Q(z)f(z) is of degree not exceed-
ing (n — 2) and since Q(z,) = P’(z;,) it follows by Rouché’s theorem
that f*(z) has at most (n — 2) zeros in |z| < 1. Therefore f(z) has
at least one zeroin |z| < 1. This means that P’(z) has at least one
zero in |z — 2| <1. If Q) =0 then P’'(z,) = 0 and the same is
true. From Theorem 3 we can deduce that Ilyeff’s conjecture is true
if all the coefficients of Q(z) are less than one in modulus. This includes
in particular the case where the theorem of Enstrom-Kakeya [3] is
applicable, i.e. when the coefficients of Q(z) form a monotonically
decreasing sequence of positive numbers.
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