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The Norlund summability was first applied to the theory
of Fourier series by E. Hille and J. D. Tamarkin. Many
other mathematicians have since worked in this field. Recently
T. Singh has proved a nice theorem concerning the Norlund
summability of Fourier series. In Part I, we shall give a
generalization.

Absolute Norlund summability was defined by L. McFadden
and he proved a theorem concerning the absolute Norlund
summability of the Fourier series of functions of the Lipschitz
class which was generalized by S. N, Lal., We shall give
another generalization of McFadden’s theorem in Part II.

PArT 1.

1. Let X2 ,a, be a given series and (s,) be the sequence of its
partial sums. Let (p.) be a sequence of real numbers and P, =
Do+ p,+ -+ + .. We suppose that P, + 0 for all n. The series
S a, is called to be summable (N, p,) to s when lim,_. ¢, exists and
is equal to s, where

t, =

1 kE:()pn—ksk = 1

P, P, kzz.opksn_k .

t, is called the nth (N, p,) mean or nth Norlund mean.
In the special case in which p, = (n - zf - 1) = A« > 0), the
Norlund mean reduces to the (C, @) mean. Another special case that

P, = 1/(n + 1), is called the Harmonic mean.
The condition for the regularity of summability (N, p,), is

p./P, —0 and élpkl:O(anl) as n— co .

If (p,) is a positive sequence, then the second condition is satisfied.
It is also easy to see that, if (p,) is an increasing sequence, then a
(C, 1) summable sequence is summable (N, p,).
We shall define p(t) on the interval (0, ) such that p(n) = p,
for n =0,1,2,--- and that p(t) is continuous on (0, ) and is linear
t
in each interval (k,k + 1)k =0,1,2,---). We put P(t) = S p(w)du,
0
then, P(n) = (1/2)p, + 0, + +++ + Py + (1/2)p, = P, a8 % — o when
P,— « and p,/P,—0.
T. Singh [4] has proved the following theorems:
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THEOREM S1. If (p,) is a positive sequence such that p,| and
P, — o and further if

(1) 0() = [/ p.(w) | du = o(p(1/t)/P(1/1)) as t—0,

then the Fourier series of f is summable (N, p,) to f(x) at the point
z, where @, (u) = f(® + u) + flx — uw) — 2f(x).

THEOREM S2. If (p,) satisfies the conditions of Theorem S1 and
(2) U(t) = | y.(u) | du = o(p(L/0)/P(L]t) as t—0,

then the conjugate Fourier series of f is summable (N, p,) to

ﬁq*mm i
w Jo 2 tan u/2

at the point x when the last integral exists, where

Vo(u) = f(@ +w) — flo —w) .

We shall prove that we can replace the condition p,| by the
more general one

(3) Snu\p’(u)ldu=O(P,,) as m—s oo .
If (p,) is monotone, then the condition (3) is equivalent to
(4) np, = O(P,) ,
since
S:up’(u)du = up(w)]r — Sl p(u)ydu = np(n) — P, + OQ1) .
If (p,) is decreasing, then (4) is satisfied automatically. In general,
condition (3) implies (4).
If the condition (4) is satisfied, then (1) implies
(5) &) = o(t) as t—0.
2. Our first theorem is as follows.
THEOREM 1. If (p,) is a positive sequence such that P,— o,

(3) holds, and condition (1) is satisfied, then the Fourier series of f
is summable (N, p,) to f(x) at the point x.
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Proof. We write ¢, (u) = ¢(u) and by t.(r) we denote the nth
Norlund mean of the Fourier series of f at the point x, then

ey — LT (b)) (& .
(@) = f@) = g 2O (5 P sin (i + 1/2)t>dt
-1 S 2() 1, t)dt
2nP, Jo2sint/2
_ 1 i/n T . 1
=g}, 1) =g
By (5),
A (o) ] (& .
= P, So t (Z‘op““" kt)dt
= an{ 190 dt = o) .
We write

| L,(t) | = |§0pk sin(n — k + 1/2)ti

3

[/t .
<Sp+l> pks1n(n~—lc+1/2)t'
k=0 k=[1/t]

= L,(t) + L) ,

then we have, by Abel’s lemma,

IL:{(tH < A{ p([t/t]) + p(n) + _]-_Sn Ip’(u) | du .

t t Jut

Therefore

R N R (2)

1= l P, Sun sin ¢/2 L"(t)dtl
A" @17, g lo@) | 74

= e LAl t

=P, {Sx/n t Litas + ot L"(t)d}

=iu+@,
where

IM§ﬁB@ﬂww4¥9Hmﬁ
= @(t) = @) pd/t)
+ |, papmar + | 20200 g

= o(P,) + o(1)§” ﬁiﬂdt o] p(;/t) it

i/n 1/n

= o(P,)
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and
" lo@) | p(1/tD " @) | _p(n)
J, < A{SW { Uthap -+ SW L 20 gy
51 | ¢(t) | dts [ p'(w) | du}
<

aff, “”“’ 20 e+ [ EE]
+ pngrn @(t) 20 g [ o() S |p(u)|du] i

"o®) , o) P/
+ Sl{n t dtSmlp(u) | dw + Slln t* t* ot

< AJ, + o(np,) + o(np,) + O(Sj(p’(u) I du)
+ o(§u | 9'(w) ] du> + o(gu |0/ (w)] du)
=o(P,) .

Thus we get J = o(1) and then we have proved the theorem.

3. THEOREM 2. If (p,) is a positive sequence satisfying the
conditions in Theorem 1 and

T(t) = | |v.(0) | du = o(p(L/t) PA/D) as t—0,

then the conjugate Fourier series of f is summable (N, p,) to

~1 tim g _ V) g
T n-e Jua 2 tan t/2

when the last limit exists.

Proof. Let +,(t) = 4(t) and f,(x) be the nth (N, p,) mean of
the conjugate Fourier series of f, then

Ty (L[ D)
() < Sun 2tant/2 aé

= 2;; S:m sqlﬁr:(tt/; (k ) cos -2—t — cos (k + ;) ))dt

[0 (i L.

Applying the method of proof of Theorem 1 to above integrals, we
obtain the theorem.
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Parr II.

4. Let (t,) be the sequence of Norlund means of the series
Sa,. If 3|t, — t,,] < o, then the series >,a, is called to be
summable | N, p, | or absolutely summable (N, p,).

L. McFadden [6] proved the following theorem.

THEOREM M. Let (p,) be a nonnegative, decreasing and convex
sequence tending to zero such that >, Pin* < . If felipa(0<a<1)
and

& 1
(6) §1W<m’

then the Fourier series of f is | N, p,| summable.
This was generalized in the following form by S. L. Lal [3]:
THEOREM L. Let (p,) be a monnegative, decreasing and convex

sequence tending to zero such that >, Pin* < . If the continuity
modulus w(t) = w(t; f) of f satisfies the conditions.

(7) 520 < o<a<y
and

= oljn) _
(8) nz="1 n'*P, <o

then the Fourier series of f is | N, p,| summable.
We shall prove the following theorem:

THEOREM 3. Let 2=p>1, 1/p+1/g=1 and let (p,) be a
positive, decreasing and convexr sequence tending to zero. If

(9) ilpzn”‘z < oo
and

> @(1/n)
(10) 7§1 rn,l/‘IPn < oo

where @(0) is the continuity modulus of f, and further if

o 1 < A
a=n mA(@(1/m))*~ = (nw(l/n))?
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(or more specially, if u*w(w)| as ul for a positive § < 1), then
the Fourier series of f is | N, p,| summable,

If (p,) decreases monotonically then (9) is equivalent to
Ei(x) = f‘, p.cosne and &(x) = i P, sin nx
n=1 n=1

belong to L~.
From (9) we have

P, = 3\ ps = 3 p-tir -kt
k=1

é (i pgkp—z)llp( > k(z—p)qlp)llq __<_ A,nllp
k=1

&
I
-

and then

a $olm _ S oln) _ 45 olm _

n=1 n pryuny | nll‘I.nl/P

Therefore, under the condition (9), the condition (10) is stronger
than (11). If p decreases from 2, then (9) becomes weaker but (10)
becomes stronger,

In the case p = 1, we have the following.

THEOREM 4. Let (p,) be a decreasing and convex sequence tending
to zero, such that

(12) P

n=1 N
and

e 1 A
13 < 2
(13) 2 b =P

If f has the continuity modulus w(d) such that

w(l/n)
an

(14) ) < oo,

then the Fourier series of f is summable | N, p, |.

It is known ([7], Chap. V, §1) that if (p,) is a decreasing and
convex sequence tending to zero, then £,(z) is integrable and that if
(p,) is decreasing and satisfies the condition (12), then &,(x) is inte-
grable. We have also



NORLUND SUMMABILITY OF FOURIER SERIES 295

P, = 3\p, = 3, (n/)k < An,
and then we have 3 w(1/n)/n < «, i.e., (11) holds also in this case.

5. For the proof of Theorem 3, we use the following lemmas.

LEmmA 1. ([5]) If (p.) is a positive and decreasing sequence,
then

= APQ)t)

b
i(n—k)t
S i€’
k=a

for any a and b > a and for any integer n.
LEmMmA 2. ([6])) If (p.) is a positive and decreasing sequence
and &(t) = D, e, then
&z + 2t) — &) | < A-%P(%-) for all © in (t,7) .

LEMMA 3. ([2] and [1]) If \Mt) is a positive increasing function
on (1, ) and fel® 1 < p < 2), then

< ASH%%)“(S | f@+8) — fl@— B dw)“"

where 02, = ai, + bi, a, and b, being the mth Fourier coefficients of
f and 1/p + 1/g = 1.

6. We shall now prove Theorem 3. By the definition, we have

b= tos = =3 (Let — L= )Dyt))at

A RAA LA\ i o
= leofE (G - F) costfar
S N —

- Pn11>,,~1 [[2®{E @.P. — p.P) cos (u — yt}ar

where p_, = P_, = 0, and then
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Tt — b | < 1~ |§:@(t)(§0 P, €08 (1 — k)t)dtl
=+ Pi_l S:In¢(t)<§npk cos (n — k)t)dtl
- ¢ Pﬁ%_l H:'";o(t)@: P, cos (n — k)t)dti
+ Pi_l E/”go(t)( 3% b cos (n — k)t)dt
+ %Z—S:"q)(t)@ P, cos (n — k)t)dt’

following McFadden [6]. We shall begin to estimate I,.

1 ® ad
I, =< P {‘ Sogo(t)(kzz‘,o D), COS kt> cos nt dtJ
+ l S”gv(t)(kg‘;J P, 8in lct) sin nt dt I}
=1 {H BE(t tdt|
5 ) P00 cos
+ ‘ S"cp(t)fz(t) sin nt dt l}
= I'n,l + In,2 .
Let
T . o 1/q
A, = S P(t)2 () cosnt dt and E, = (g |4, |q) ,
then
oo I o 9itL A
s =3 L =3l - 575
= w=2 P, , j=i a=2i P,
oo 9i+1_y 1/q s2i+1—1
§§‘1(7§51A"lq> <n21 >
oo 2d+1—1 1 1/p
<
= _7'§=:|1 E2J< n=29 _P,,f’_l >

_ip B LY o435 B

n=1 9 \m=2n P'/ﬁ—-l

If we put Mn) = n'"P,, then \M(n) | = as n increases. By Lemma 3,
we get
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S = Aﬂltz{ff 5 (S | 4 s,)l”dx)

where

d(p-&) = p@ + Oé(x + t) — p(x — )& (x — t)
=& + Dle@ + t) — oz — B)] + p(x — [Ex + ) — & — ?)]
= 51(37 + t)AtQD + (p((l) - t)Atél ’

and then

S = Aslﬁ(—lm(s | &z + )40 P dx>
A Frpgpll ot = 04 ds)”
= 5

By (9) and (10), we have

A

f’éAgl w(t)dt

=_odju) ,
T R S du

v wM1P(u)

and, by Lemma 2 and (11),

gl dt
tl“/”P(l/t)

ot‘*‘“'P(l/t) <S ”( ( >>pdx>up
(15 da)”

A,
S

<a+|rodmm L (1282 40) " qu
A+

S A+

(S @) | &z + 2t) — &) |? dx)

1wt we(ljw)li\) v
S w(l/u) 1"'(51 du Sl w(l/fv) >"

upw(]_/u)p/q

<A+ A(S1 w(l/v) dvg du >1/p

v v wP@(l/u)"~?

”Mdv>”" <A.
- <

1

v

§A+AQ

Thus we have proved that .7 = 32, |1..| < . Similarly we can



298 MASAKO IZUMI AND SHIN-ICHI IZUMI

prove that 37, |I,.| < o, and therefore >y, I, < co.
Secondly, we shall estimate the sum >};_,J,. Since > 5_, p,.cos(k—n)x
is a nonnegative function, we have

i J. < i @(1/n) S””<k§‘,pk cos (k — n)t)dt

<> “’(1/’”)<&+ $ P sink—”)

=t P, , n kzntt b —m n
sa+3 2 p <5 O L 44,

since 37, (sin kx/k) is uniformly bounded.

Thirdly,
o [ Da a)(l/n) &
"Z=1 Kn é n2=1 PnP'n—l n IZ‘O Plc
<AY P 3 P ol
k=1 n=k+1 Pn n—1 n
S p Uk & (1 1
= Akz-_—:l P, k n=zk‘+1< P,_, P'n>
=k
Finally,

i P, cos (k — n)t + ;" nZ_: P, cos (n — k)t
k=n n k=0

= {& + i (Pe — De+a) sin (n — k + 1/2)t}

2 2 sin t/2
N, sin(m—k+ 12t 1, }
- {kz"‘o , 2 sin /2 2 "
and then
L[ et (3 , |
< — —

L L mem g @~ P s — ke 1/2)t )dt

i F P(1) /nﬁl : —k 2 ]

* PP, , Sl/n 2sin t/2 \kzzo P sin (n 1 )t> a

= 2 (1- 1;;: INECIE:

=L, + Ly + LY,

as in McFadden [6]. Now
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i L; § i Pn = Du+1 Szl w(t) dt
1jn

n=1 n=1 P’n+1 tz

S P — Pars o (U w(t)
<< Lr Snre
= ng' P, kZ'l §1/(k+1) t? dt + 4

w(t) dt Z Dn ~— DPuts + A

k=1 Sl/(lc—ifl) n=k w1

< o) 1/t S _w(1/n)p,
§k22,§mkﬂ) 2 P(l/t)dt+A<Az i + A

iL::gi Pn S, @(t) P(—t—)dt

e P s o) pf1
- nz=:,1 PnPn L kz:l Sll(k+1) t P< t )dt +4

ggl ;t)dt+A<i “’(1/”) +A<A

2

'nPn—l

1

2 A.
[

Ms

Ly A

Ms
H/\
I\
IIA

AZ T

=1

]
3
it

Collecting above estimations, we get >, |t, — .| < co.

7. We shall now prove Theorem 4. We start from (15). First,
__1 - e 3
I, = P SOQJ(t)(kE:]o P, €os (n k)t)dt\
= | [[ota cosnt at| + | |'pé(t) cos me at|}
=1, + In,z .
Hence
<3 P1 "t + w20 |- @t + m/2n) — it — m/2m) | dt
+ 5 2 Ipte—rizm) et mjzn) - a(e—m/2m)| dt
- ‘j—l -+ 'j—z y

where, since &, is integrable and | p(t + m/2n)

299

— @t — m/2n) | = Aw(l/n),
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f<Ail a)}l/n) < o

by the condition (14) and, since"

&@) = 3 0 + Do, Kif)

we get
A Pl || 0@+ /) - &@]do + A
=% S e Do 0@ Ke + 5n) - K)o + A
<> e (S @+ ap+ 3 @+ Do)
x S 0@ | K + 7/n) - K,()|dz + A
=+ I A,

It is well known that
|K)(z)| = AY* and |K(x)| = A/a*
and then

S“'" Ko+ mfn) — K@) | do = 24X < dvm
0 n

| K@ + 7/n) — K(2)| = A/na* in (v, 7).

Therefore,

A< L S wrnL (S: + S Jow | Ko + zjm) — K.(2)| do

=43 {3+ o S —o(4) + 30+ Vv B 1))

(;) kP, + Z w( > — Ditr) + pk+1)}

1
nP'n—-l

{k(pk“pk+1)+pk+1}z L
=t NP, ,

oG FE e+ Bl

I\

'
Me
-y
——
R
§ =

~
T
Ms

S
=~

&=

3
I
=

+

b

Mo ==
S

/
| =

SN——

~
+
'S
Ms

=
I
-

IA

b

i
= |
S
—~~

> o=
~—

o

D Ap, = p, — 2pu+1 + Pu+2 and K, is the sth Fejér kernel.
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by the condition (11) and the relation ([6], p. 183)
k(pr — D)/ P < Afk .
Further,

ke 1
| 1)4*p,
Fr=AS npz o+ Do 3 o3

= INS (1 4 2)(Pusr — Pats) + Pt
< =
=Azw(k>nz“ nP,_,

I
3

Thus we have proved that >,I,, < o. The estimation of I,, is
similar to that of I,, and thus >, I, < co.
Now, >\, p, cos (k — n)x is a positive function and then

& @(l/n) d _
5 J.s 520 S 3, pocos (b n)t)dt
S$ O, o g% ol

n

Convergence of >\» K, and >,7_, L, is proved as in the proof of
Theorem 3. Thus we have established Theorem 4.
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