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A new type of ring extension introduced by J. Szendrei,
which may be viewed as a generalization of the splitting
Everett extension, will be discussed. The examples of this
type of extenmsion given by Szendrei are generalizations of
the complex field extension of the real field, and of the
quaternion extension of the complex field, Our investigation
produces a larger class of examples.

In [4], J. Szendrei considered a very general type of ring ex-
tension. One of the four special cases that he lists is the type that
will be studied further in this paper. We shall formulate the defi-
nition of the extension in terms of bimultiplications (ef. [2] or [3]).
A bimultiplication ¢ of a ring A is a pair of mappings a-— oa,
a— ao of A into itself satisfying the rules

o(a + b) = oa + b, (@ + b)g = ac + bo, g(ab) = (da)b, (ab)o = a(bo) ,

and a(ob) = (ao)b, for all a,be A. A pair of bimultiplications ¢ and
r is said to be permutable if g(at) = (6a)r and t(ao) = (ra)o for all
acA, and a set of bimultiplications is permutable if every pair in
the set is permutable. The sum ¢ + 7 and the product ot of two
bimultiplications are defined by the equations (¢ + 7)a = ga + 7a,
a(c + 7) = ao + at, (07)a = o(ra), and a(o7) = (ac)r for all aecA.
Under these operations the set of all bimultiplications of A is a ring,
denoted by M,. For each element ¢ of A, a bimultiplication v, is
obtained by setting v.,a =ca and ay, = ac for all ae A. Clearly
the mapping v: A — M,, defined by ¢—vy,, is a ring homomorphism.
Bimultiplications in the range of v are called inner bimultiplications,
Let A and B be rings. We define the ring AxB to be the direct
sum of A and B as additive groups, with multiplication given by

1.1 (a, b)(c, d) = (ac + {b, d}, 6.,d + bo, + bd) ,

where o is a homomorphism from A onto a ring of permutable
bimultiplications of B, and {-, -} is a bilinear function from B x B
into A satisfying the equations

(1.2) b0 0,0y = Opp,0d ,
(1.3) {b, ed} = {be, d} ,
(1.4) {b, 9,c} = {bo,, ¢},
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(1.5) {o.b, ¢} = alb,c}, and {b,co.}=1{b,ca,

for all ac A and all b,¢,dec B. The mapping a — (a,0) is a mono-
morphism of A into the ring AxB. In case the bilinear function
{+, -} is identically zero, the extension reduces to a splitting Everett
extension [2]. However, in contrast to the Everett extension, the
ring A*B need not contain an ideal isomorphic with B.

Note that if B has an identity, then (1.4) is redundant: By
1.3), {c,d} ={1,cd}, so {b,0,c} ={1,b(c.c)} and {bo,, c} = {1, (ba,)c}.
But b(o,c) = (bo,)c, since o, is a bimultiplication, so (1.4) is satisfied.

Let p be a fixed element in the center of A. The ring whose
additive group coincides with that of A and whose multiplication is
defined by the mapping (@, b) — pab will be denoted by A4,. We shall
not introduce a new symbol for the product in A,; products can be
written out in terms of the given multiplication in 4. Our discussion
is concerned with extensions of the form AxA,.

We denote the inverse of an automorphism ¢ by ¢’, and the
identity automorphism by I.

2. The main results. We begin this section with some ele-
mentary results concerning the particular types of functions ¢ and
{+, -} that will be used later.

ProprosITION 1. Let A be a ring and let ¢ and + be any maps
from A to A such that ¢(a) — ¥(a) is in the annihilator of A, for
all ac A. Define 0 on A by

2.1) o.b = ¢(a)b, bo, = byr(a) for all a,bc A .

Then ¢ maps onto a set of permutable bimultiplications of A4,, and
is a homomorphism if both ¢ and + are homomorphisms.

Proof. Since p lies in the center of A4, the fact that ¢ maps onto
a set of permutable bimultiplications of A, follows directly from the
assumption that ¢(a) — v(a) is in the annihilator of A, together with
the associative and distributive laws for A. These same laws ensure
that ¢ is a homomorphism if both ¢ and + are homomorphisms.

Note that, in general, the bimultiplications of A, defined by
(2.1) are not inner bimultiplication. For example, if p =0 then
there is only one inner bimultiplications. Indeed, when ¢ and + are
homomorphisms, we in effect make A, into an A-bimodule and let
the actions of A on A, determine the range of o.

ProprosITION 2. Let A be a ring with identity and let ¢ and +
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be automorphisms of A. Suppose that for a given extension AxA4,,
o i defined by (2.1). Then, for some gc A,

2.2) {a, b} = ¢'(a)qy'(b) for all a,bc A .

Conversely, suppose that for a given extension AxA4,, {-, -} is defined
by (2.2), where ¢ is not a zero-divisor. Then ¢ is given by (2.1).

Proof. By (1.5), ¢'(a){1, 1}v'(b) = {041, 1oy} = {al, 1b} = {a, b}.
The result follows with ¢ = {1, 1}.
For the converse, using (1.5) again,

¢'(0.b)g¥'(1) = {o.b, 1} = afb, 1} = ag'(b)gv'(1) .

Thus, since ¢ is not a zero-divisor, ¢'(g,b) = a¢'(d) and ¢,b = ¢(a)b.
The proof of the other equation is similar.

For the remaining discussion we assume that ¢ is in the center
of A. We now give conditions relating ¢, v, p, and ¢ such that
equations (2.1) and (2.2) determine an extension AxA4,. Under these
conditions, we then represent the extension as a subring of the ring
of 2 x 2 matrices over A.

THEOREM. Let ¢ and + be automorphisms of a ring A, and let
q be a fixed element in the center of A. Define o and {-, -} by
(2.1) and (2.2) respectively. Assume that

2.3)  ¢(a) — ¥(a) s in the annthilator of A, for all ac A,
24) ¢ =+ on {pa:ac A},

(2.8)  ¢(q) = ¥(q) ,

and

(2.6) o'y ="

Then with multiplication defined by (1.1), one obtains a ring extension
AxA,, and it is isomorphic with a subring of the ring of 2 x 2
matrices over A. The isomorphism 1is given by

a 5() ]
,0) — , ,beAd.
(@) [W(b) §/ (@) + pb) abe

Conversely, if AxA, is a ring extension and A has an element that
is not a zero-divisor, then (2.3) holds. If q is mot a zero-divisor,
then (2.4), (2.5), and (2.6) also hold.

Proof. Since ¢ and + are automorphisms and (2.3) holds, it
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follows from Proposition 1 that ¢ is a homomorphism from A onto a
ring of permutable bimultiplications of A,. Clearly {-, -} is bilinear;
so a ring extension AxA, will be obtained if equations (1.2)—(1.5)
are satisfied. Equation (1.2) can be verified using (2.5) and (2.6).
Equation (1.3) follows from (2.4) and the definition of multiplication
in ‘A,. Equation (1.4) follows immediately from (2.6). Finally, (1.5)
is a direct consequence of (2.1) and (2.2).

The isomorphism follows from a straightforward albeit cumber-
some calculation using (2.3)—(2.6) and the definition of multiplication
in A,.

For the necessity, condition (2.3) is a consequence, under the
stated hypothesis, of the fact that (as,)c = a(o,¢) for all a,bd, cec A.
If ¢ is not a zero-divisor, then, since ¢ is in the center of A, (2.4)
follows from (1.3), (2.6) follows from (1.4), and (2.5) follows from
(1.2) and (2.6) combined.

COROLLARY 1. If q s mot a zero-divisor, then (2.1) and (2.2)
determine an extension AxA, if and only if (2.3)-(2.6) hold.

COROLLARY 2. If p =0 and (2.5)-(2.6) hold, then one obtains a
ring extension AxA, with matrixz representation

a ¢'(b) ]

 b)—
(@ 0) [W@ (@)

COROLLARY 3. If ¢ =+, them one obtains a ring extension
AxA,, with matrix representation

a #'(b) }
g¢'(d) a + ¢'(pb) |’

Moreover, AxA, is isomorphic with the extension AxAy ., where
(2.1) and (2.2) are defined with the identity automorphism and the
same ¢ as i1n the extension AxA,.

(a, b)—{

Proof. The first statement follows immediately from the theorem.
To establish the isomorphism, observe that the product in AxA,,
is given by

(a, b)(c, d) = (ac + qbd, ad + bc + ¢'(p)bd) ,
while the product in Ax 4, is given by
(a, b)(c, d) = (ac + g¢'(bd), g(a)d + bg(c) + pbd) .
The mapping AxA4(p) — AxA, defined by (a, d) — (a, ¢(b)) is then
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easily seen to be the desired isomorphism.

REMARK 1. In connection with Corollary 3 we note that if
¢ = ¢ and A is commutative, then AxA, is commutative. Also, if
the extension AxA, is commutative, then of course A must be
commutative; if in addition, A contains an element that is not a
zero-divisor, then we can deduce that ¢ = + as well.

REMARK 2. Let A be a field, and ac AxA4,. We may view « as
the 2 x 2 matrix associated with it by the theorem, Now if deta = 0,
then of course a is a unit in the ring of 2 x 2 matrices over A; a
routine verification shows that « is actually a unit in AxA4,.

ExAMPLE 1. Let S be a square in the plane, let A be the ring
of all continuous real-valued functions on S, and let ¢ and « be the
automorphisms induced by the reflections of S in its diagonals. Then,
since the reflections commute and have period two, ¢*= 4* = I and
évr = g, 80 (2.6) is satisfied. If ¢ =1 and p = 0, then by Corollary
2, AxA, is an extension. Let ac A be a nonzero function such that
#(@) = —a and +(a) = a. Then (a,a)* = (0,0) in AxA,. Thus the
extengion is not a ring of functions with pointwise operations.

ExXAMPLE 2. Let A be the direct sum of two copies of the
complex field C, p = (0, 1), ¢ = (0,0), ¢(a, ) = (@, d), and v = I. Then
(2.3)—(2.6) are satisfied, but p # 0 and ¢ =+ . This extension is
isomorphic to a direct sum of two extensions of C by itself. In the
first extension we have conjugation for one automorphism and I for
the other, with p = ¢ = 0; in the second extension we have I for
both automorphisms, with »p = 1 and ¢ = 0.

ExampLE 3. If ¢ =1, +4* =1, p =0, and (q) = ¢, then conditions
(2.5)—(2.6) are satisfied, and A+A, is a “quaternion” extension iso-
morphic with the ring of matrices of the form

) v
gy () (a)]’

Szendrei’s “quaternion” extensions are all of this form. However,
the extension of the four element field {0,1, 4,1 + 6} obtained with
¥(@) =1+ 6 and ¢ = 1, is not a Szendrei “quaternion” extension.

As a special case, let A be the field obtained from a totally
ordered field F' by adjoining the square root of a negative element
feF, define 4 by v |F=1I1 41 f)=—1Vf, and let ¢ = —1. Then
ay(a) > 0 for all nonzero ¢ in A, and one can show immediately,
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using Remark 2, that the extension is a division ring. Also, it is
easy to see that if avy(a) > 0 for all nonzero a in A and * = 1I,
then + must be as defined.

ExAmMPLE 4. If ¢ = + and A has an identity, then the extension of
Corollary 3 contains a root of the quadratic equation 2* — ¢'(p)x — ¢ = 0,

namely,
0 1
[q ¢’(p)} )
When ¢ =+ =1,p=0, and ¢ = —1, we recover Szendrei’s “complex”
extension.

3. Some special cases. This section contains a discussion of ex-
tensions of the form AxA, when A is a field or an integral domain,
with the additional assumption that ¢ = ++. Thus the representation
is that given by Corollary 3. In view of Corollary 3, we can assume
without loss of generality that ¢ = 4 = I.

ProrosiTioN 3. Let A be a field. If 2* — px — ¢ is irreducible
over A, then AxA, is a field. If «* — px — ¢ has a root in A4, and
p»*+ 4¢ = 0, then AxA, has a basis (as a 2-dimensional algebra over
A) consisting of the identity and a nilpotent element of index two.
If * — px — ¢ has a root in A and p* + 4¢ + 0, then AxA, is iso-
morphic with A P A.

Proof. The determinant of the element

o s
qb a+15b

is @ + pab — ¢b*. If * — px — q is irreducible and the characteristic
of A is not two, then p* + 4¢ is not a square and we can write

o* + pab — ¢b* = (a + Pb/2)* — (p* + 49)b/4 ;

if the characteristic of 4 is two, we note that a® + pab — ¢b® is a*
when b = 0 and b*(a/b)* — p(a/b) — q] when b = 0. In either case, it
follows quickly that the determinant is zero if and only if both a
and b are zero. Thus, by Remark 2, we see that A% A, is a field.

Now assume that 2* — px — ¢ has a root in A and p* 4 4¢ = 0.
If the characteristic of A is not two, then [_5/ 2 p?z] is in AxA,
and is nilpotent of index two. If the characteristic of A4 is two,

then p = 0, so there exists ¢e A such that ¢ =¢. Then [; }3] is in
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AxA, and is nilpotent of index two. Clearly the identity and the
indicated nilpotent elements are linearly independent, and thus form
a basis for AxA,.

Finally, assume that 2* — px — ¢ has a root in A and p* + 49 = 0.
If the characteristic of A is not two, then »* + 4¢ is a square; let
d ¢ A satisfy d*(p* + 4q) = 1. Then the element

o - L(l — pd)/2 d }
b qd 1 + pd)/2

is a nontrivial idempotent. If the characteristic of A is two, let a
be a root of * — pxr — ¢ in A, and set

pla !
a, = .
gp~ pTla +1
Then «, is a nontrivial idempotent. The isomorphism follows quickly
since &; and 1 — a;, for 7 = 1, 2, are orthogonal idempotents.

REMARK 3. If the characteristic of 4 is not two, we can replace
the hypotheses by: »* + 4¢ is not a square, p* 4 4¢ = 0, and p* + 4¢q
is a nonzero square, respectively.

REMARK 4. Of course, in general, the various field extensions
obtained in part one will not be isomorphic.

REMARK 5. If A is the complex field and ¢ = 4, then AxA4, is
not a field regardless of the choice of p and ¢. However, it is
possible to obtain the division ring of quaternions as an extension of
the complex field with ¢ # +, as indicated in Example 3.

REMARK 6. Since an extension AxA,, where A is the complex
field, can contain nontrivial nilpotent elements, it follows that semi-
simplicity is not, in general, inherited by the extension. We note
that for commutative rings, semisimplicity is inherited by Everett
extensions [1, Th. 4].

ProposiTiON 4. Let A be an integral domain. Then AxA, is
an integral domain if and only if x* — px — ¢ is irreducible over the
quotient field of A.

Proof. Assume that a* — px — ¢ is irreducible over the quotient
field ' of A. Let acAxA4,, a+0. View a as an element of FxF,.
Then, by Proposition 3, deta # 0 and a™* exists in FxF,. Since
(deta)a—te AxA,, if af =0, then (deta)8 = 0. But A is an integral
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domain, so 8 =0, Thus, AxA, is an integral domain.

If «* — px — ¢ is not irreducible over F, then by Proposition 3,
F« F, contains either a nontrivial idempotent or a nontrivial nilpotent
element of index two. If B is such an element in FxF,, then for
suitable nonzero b € A we have bBe€ AxA,. Thus, bB is a zero-divisor
in AxA,.
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