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In the present paper, the following is proved:

THEOREM, Let a4, ---, a, be m distinct, nonzero residues
modulo #, where 7 is any natural number and where

m = 3Vén exp {c_____v log } ,
log log n

where ¢ > 0 is some large constant. Then the congruence
&t + ++ + entn = 0(mod n)
is solvable with ¢, = 0 or 1 and not all ¢; =0,

The method of proof is completely elementary, in that it
is based upon well-known results concerning the addition of
residues modulo a natural number #» and upon results from
elementary number theory.

In a recent paper by Erdos and Heilbronn (see {1]) the following
question is investigated. Let » be a prime and a,, ---, a, distinct,
nonzero residue classes modulo p, and N any residue class modulo p.
Let F(N) = F(N;p;a, ---,a,) denote the number of solutions of the
congruence

(1) €1a1+"'+8mamEN(mOdp))

where the ¢; are restricted to the values 0 or 1. What can be said
about the function F'(N)? The authors prove the following result:

THEOREM 1. F(N) >0 if m = 31/ 6p.

They conjecture that the bound 31/ 6p in Theorem 1 is not best
possible: 3 6p can probably be replaced by 2 p. On the other
hand, they show that the constant 2 cannot be replaced by any smaller
constant, as shown by the example

alzl’ a, = —-—1’ e, am:(_l)m—l[/’_n_;__l].

Note that if m < 2-(vV'p — 2), F(1/2(p — 1) = 0.

The question which now arises is what can be said about F(N)
if the prime p is replaced by a composite integer n? Theorem 1 is
clearly false for composite n. In fact, even the bound m = —1 + #/2
will not guarantee that F'(N) > 0 for all N when % is composite.
The difficulty is that all of the a, may have a prime factor in common
with », in which case N =1 could not be represented in the form
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(1). However, this predicament does not arise when we try to represent
0 in the form (1). Therefore, it is natural to ask what condition on
m will guarantee F'(0) > 0 for all n. Erdos and Heilbronn conjectured
that F(0) > 0 provided m > 21/ n ;' and at a conference at Ohio State
University Erdos raised the question whether F'(0) > 0 could be proved
if one assumed the stronger hypothesis m > K-nt®+:, where ¢ is any
positive number, and K is some absolute constant.

Since the expression exp {c-(1 log n)/(log log n)} is O(n®) for any
e > 0, the theorem of this paper answers Erdos’ question.

2. Necessary lemmas. In order to prove the theorem a number
of lemmas will be needed. They are rather straightforward modifica-
tions of those given in [1] for the case when » is a prime.

LeMMA 1. Let b, ---, b, be | distinet residues modulo n; and let
B(z) denote the number of solutions of

x = b; — b; (mod n)
with 1 <4,5 <1l. Then B(x + y) = —1 + B(x) + B(y); 1.e.,
l—B@x+y)=(- B@®)+ (I —By).

Proof. See [1], page 150.

LeMMA 2. Let 1<kl <n/2, n=2, and let d, ---,d, be k
distinct nonzero restdues modulo » such that (d;, n)=1. Let b, ---,b,
be | distinct residues modulo n. Then there is ant,1 < 1 < k, such
that

B(d,) <l —k/6,
where B(d;) is the number of solutions of

d; = b, — b, (mod n) .

Proof. Let G denote the cyclic group of residues modulo n, and
let A=1{0,d,---,d,}. Put r=1+ [2l/k)]. By I. Chowla’s theorem
on the addition of residues modulo n (see [2], Corollary 1. 2. 4 (p. 3)),
one obtains

|24| = |A| + A —1=2k + 1

rA| =7k + 1,

! Relative to this conjecture, we mention an unpublished result of Mann and
Olson (see [3]). They have shown that if G is a group of type (p,p) and a1, -+, am
are distinct elements of G, then F(g) > 0 for every geG if m = 2p =2V [G|.
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provided jA == G for 1 < j < r. Hence, we obtain ¢ = min (n — 1, rk)
distinet, nonzero residues c,, ---, ¢, modulo % which can be expressed
as sums of not more than » of the d;; and the summands need not
be distinct

Since > ... B(¢,) £ B1)+ «-- + B(n — 1) = (I — 1), there is an
s such that

B(cs)él(lt;l)

1 1
<ll-1 =
=i )maX{n_l, ﬂc}
W=y _ri-1 1.
= 2l—-1 21-—1 2

ie., I — Ble,) > /2.
By using induction on the conclusion of Lemma 1, we obtain

(2) L= Blo, + -+ + o) S 3 (0~ B@) .

By construction, ¢, = 37, €id;, (mod n) is solvable with not all ¢; = 0.
Rewrite the above expression as ¢, = 3L, d;, (mod n), where we have
suppressed those terms in the sum for which ¢; = 0. Applying (2) we
obtain

% <l —B)< Z‘ ( — B@d,)) -

Therefore, one obtains a d; such that

lk k

> S—
= 20k +2l) — 6

13
2r, — 2r

=
sincel<nr, <.

Now let 1 =d,<d, < --- <d, £n — 1 be vy distinct, nonzero residues
modulo # such that (d;, n) = 1. For 1 < w < v/2, consider all possible
subsets, S,, of u elements from the set {d,, ---, d,,}. For each subset
S., let L(S,) denote the number of distinct residue classes modulo =
which can be obtained in the form ed, + --- + &,d,,, where not all
g; = 0 and where ¢;, =0 or 1 and ¢, = 0 if d; is not in S,. Note that
determining L(S,), we do not include the residue class 0 unless it can
be expressed as the sum of <wu distinct elements of S,.

Finally, put L(w) = Max (L(S,)), where the maximum is taken
over all subsets, S,, of » elements from the set {d, ---, d,,}.
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LemMaA 3. Let d, ---,d, satisfy the properties in the above
definition. If

ed, + «++ + ¢e,d, = 0 (mod n)

implies that all ¢, = 0, then
(3) L{u +1) = L(u) whern uw=1
(4) Lw)y=u + 2 when % =3, Sfor n=4.

Proof. (3) is obvious. In order to prove (4), it may be assumed
without loss of generality that the maximum, L(u), is obtained from

d,, +++,d,, which are distinct modulo n by assumption. Also, d, +
.-+ + d, is distinct from them by the assumption that

ed, + -+- + &,d, = 0(n)

is impossible unless all ¢;,=0. Now let T'={d, +d;[2 <7 < ul.
Each element of T is distinet from d, + --- + d,, when % = 3, and
from d,. It will be shown that at least one element of T is distinet
from all of d,, ---,d,. This element, in addition to the # -+ 1 elements
dy oo, dy,d, + -+ +d, will give w + 2 distinct residues modulo =,
which proves (4), provided » = 3.

So assume that no element of 7T is distinect from d,, ---,d,, and
let d, + d; = d;, where j is a function of . It is clear that

{dj12§j§u}:{d27"'7du}’

since no two d; are congruent modulo n and none are congruent to
d,. Consequently,

é(dl +d;) = idi (mod n) .

Therefore, (v — 1)d, = 0 (mod ), which is impossible since (d,, n) = 1,
and

25 u—-1<y—-1<sn—-2.

LEMMA 4. Let d,, ---,d,, ---,d, satisfy the same conditions as
tn Lemma 3. For 3 = u < —1+ v/2, either L(u) > n/2 or

L(u + 1) > L(w) +

U+ 2
e "
Proof. If L(u)>m/2 we are finished. So assume that L(u) < n/2.

Now let S, be a set for which L(uw) = L(S,). So we have L(u) distinct
residue classes b,, -, b;,, modulo #n which are representable as sums
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of distinct elements from S,. Wehave v — v =1 + v/2 = u + 2 other
elements d; which are not in S,. Select % + 2 of these and, if
necessary, relabel them as d,, ---,d,,,. Since 1 < u + 2 < L(u) < n/2,
we can apply Lemma 2 to the sets {b,, - - -, b;,} and {d,, - - -, d,.,}, where
k=wu+ 2,1l = L(w). Hence, we obtain an 4,1 < i < 4 + 2 for which
B(d;) < L(u) — (u + 2)/6, where B(d;) is the number of representations
of d; in the form

d;=b;,—b, (modmn).
Putting S.., = S, U {d;}, we have

uu+ngu&m=mewum—B@»>um+“;2.

LemMMA 5. As before,let 1 =d, < ++« < d, <n — 1 bey distinct,
nonzero residues modulo n such that (d;,n) = 1. Then if v = 31 6n,
the congruence

ed, + - +6d, =0 (modn)

1s solvable with not all &, = 0.

Proof. Assume that ed, + --- + ¢,d, = 0 (mod n)
with ¢; =0 or 1, implies

that all ¢, = 0. We will then obtain a contradiction. By Lemma 4,
either L(u) > n/2 or

SNt 2 o W+ Bu + 42
L > 5 (252) + Lo 2 2,

which is larger than »/2 provided 4 >=1"6n. Therefore, with v >=1"6n,
we have L(u) > n/2 in either case. But we have v > 31/ 6n distinct
residues. Applying the preceding analysis to the more than 21 6n
remaining residues, we obtain L(u) > n/2 for this set also.

Therefore, we have two, not necessarily disjoint, sets each with
more than n/2 residues modulo n. Call these two sets A, B. By a
well-known argument, either A + B = G or

|G| = |A|+|B|>n/2+n/2=mn.

Therefore, A + B = G; and we conclude that 0 is representable as the
sum of distinct elements from {d, ---,d,}. This contradicts our
original assumption that 0 is not so represented. Therefore,

ed, + +++ +¢6d, =0 (modn)
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is solvable nontrivially.

3. Proof of theorem. For each divisor d of =, let @(d) =
{a;| d = (a;, »)}. Put @) = {¢,, ---, ¢,}, where h and the ¢; depend
on d, although this dependence is suppressed without loss of clarity.

For each ¢; € @(d), we have ¢; = dc}, where (n/d, ¢;) = 1. Further-
more, since the ¢; are distinct modulo n, the ¢; are distinct modulo
n/d, and they satisfy

—1 "
1<e¢/ < --- ;g["‘ ]:——1.
=6< <6 = d i

Therefore, by Lemma 5, if h > 31/6n/d, the congruence
&e, + -+ + &6, =0 (mod n/d)

is solvable nontrivially, in which case the congruence ¢,c,+ -+ +¢,¢,=0
(mod ») is solvable nontrivially.

So if m = 4. | 9(d) | = 3. 3V6n/d, then for some d, &(d) will
contain more than 81/6n/d distinct elements modulo » such that
{(a;/d), (n/d)} = 1. Thus, the congruence ¢,a, + --+ + €,a, = 0 (mod n)
will be solvable nontrivially.

We now obtain an upper bound for 3,31 6n/d in terms of =.
Suppose p°r || %. Then we have

S 3V6n/d = 3V 6n 3, d-»

din djn

=38V 6n IT @+ p~™% 4 oo & (pop)~0)
pin
<3V 6n II (L — p=¥o) .

pin

Put f(n) = 11,,, @ — p~“®)~* and choose the prime ¢ = ¢(n) such that
N =Tl,se? < n < q Il,<, », where ¢’ is the smallest prime greater than
q. Clearly f(n) = f(n). Now

log (f(n)) = _élog (1 — p-tim) :pézq“ p=U + O(1)

-o{g ) - o 2).

But logn = 3, logp = d6(q) <logn. It is well known that there
exist positive constants « and £ such that

aq < 0(q) = Bq

for all primes q. Hence, we conclude that logn = a-q. Also, 7' =
7-q’ > m, which implies that log 7’ > logn. But logn’' =4d(¢’) < B¢ =
Bq(q’/q) < vq, for some constant ¥ > 0. Therefore, log ¢ = 7, -log log 7;
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and so

fm) < f() < exp {0_1/_19&2‘_} ,
log log n

where ¢ > 0 is some positive constant.
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