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If / is a function from [0,1] to the complex plane and c
is a complex sequence, then the Hausdorff matrix H(c) for
c and a sequence L(f,c) are defined:

'P+Q

This paper consists of the following theorem and two converses
to it.

THEOREM 1. If A is a complex sequence and Σ7=oAP is
bounded (there is a number B such that if n is a nonnegative
integer then \Σ%oAp\ < B), / i s a function from [0,1] to the
complex plane such that if 0 S x < 1 then f(x) = Σ7=o Apx

p,
and c is an absolutely convergent sequence (Σ7=o I €P+I ~~ CP I
converges), then L{f,c) converges. Furthermore, if c has
limit d, L(f, c) has limit E?=o Ap(cp - d) + f(ϊ) d.

Let ^ be the collection of all functions / satisfying the hypo-
thesis of Theorem 1. S? be the set of all absolutely convergent
sequences. Theorem 1 and its converses show that ^ and £f are
related in the same way that certain sets of continuous functions are
related to certain sets of sequences in [3]. There, for example, the
set of functions analytic on the unit disc with power-series absolutely
convergent at 1 is shown to be related to the set of bounded sequences.

In Theorem 3 we use the following result due to J. S. MacNerney
[2, p. 56] and A. Jakimovski [1], which, incidentally, was used in [3]
the relate the set of polynomials to the set of all sequences.

THEOREM A. If f is a polynomial and c is a complex sequence
then L(f, c) converges. Furthermore, if f(z) = ΣJ%OAPZ

P for each
complex number z, then L(f,c) has limit ^p=0Apcp.

The following lemma is useful in the proofs of Theorems 1 and 2.

LEMMA 1. If M is an infinite, complex, lower-triangular matrix,
these are equivalent:

(1) There is a positive number B such that if each of q, n, and
m is a nonnegative integer then \ X£L? Mnp | < B and there is a

415
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sequence A such that, for each nonnegative integer p, the sequence
M[ , p] has limit Ap.

(2) If x is an absolutely convergent sequence with limit 0, then
M x converges ([ikf #]% = ^l=oMnpxp).
Furthermore, if (1) holds and x is an absolutely convergent sequence
with limit 0 then M-x has limit ^p=QApxp.

Proof. First, suppose that (1) holds and that x is an absolutely
convergent sequence. If each of q and m is a nonnegative integer,
then I Σι7=*Ap | ^ B and

Σp = q
%p+l)

P

ΣΛ
j=q

Ij + Xrί

m

n + 1 2^k

from which we see that Σ?=o^A converges.
If each of m and n is a positive integer, then (M x)H —

from this, we see that M x has limit Σ7=oApxp.
Second, suppose that (2) holds. Sequences having the value 1 at

one nonnegative integer and 0 at the others show us that there is a
sequence A such that, for each nonnegative integer p, the sequence
M[ , p] has limit Ap.

Let S be the set of all absolutely convergent sequences with limit
0 and let N be a function from S to the numbers such that if x is
in S then N(x) = Σ~=o I %P — %p+i |. {S, N} is a complete, normed, linear
space.

For each nonnegative integer n, let Tn be a function from S to
the complex numbers such that if x is in S then Tn(x) = (Λf a?)Λ, and
note that 7\ is a continuous linear transformation.

For each x in S the sequence T(x) converges, so that by the
"principle of uniform boundedness " there is a number B such that
if n is a nonnegative integer and x is in S and N(x) ^ 1 then
1 Tn(x) I ̂  J5.

If each of q and m is a nonnegative integer, let z(q, m) be the
sequence such that if p is a nonnegative integer, then z(q, m) = 1/2 if
q ^ p ^ m and ^(g, m)p = 0 otherwise, and notice that z(q, m) is in S
and N(z(q, m)) <J 1.

If each of m and g is a nonnegative integer,

1M
2 m

= | Γ . W f f , 9 ) )

5 a nonnegative integer,

1
n

1
n,m+l 2
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and Lemma 1 is proved.

LEMMA 2. Suppose that B > 0 and v is a nondecreasing non-
negative-number-sequence and b is a complex sequence such that if
each of n and q is a nonnegative integer then | Σp = g bp \ ̂  B. Then,
if m is a nonnegative integer, | ΣϊU&Λ I ̂  vmB.

Proof. The lemma is true if m is 0. Suppose that m is a
positive integer such that, for each sequence b as described above,

Let a be a complex sequence such that if each of n and q is a
nonnegative integer, then | Σ j = Λ | <̂  B. Let 6 be the sequence such
that if p is a nonnegative integer, then bp = ap if p < m — 1,
δ*-i = α*-i + α«, and 6P = 0 if p ^ m. Then

ΣM, +

and Lemma 2 is proved.

Let us define a matrix Y such that if each of p and
nonnegative integer, then

is a

where we interpret 0° as 1. Without proof we state

LEMMA 3. If each of p and k is a nonnegative integer, then
= (P + + Yp+Uk) - pipi; ^0 for p>k, and,

if n is a positive integer Y7lfk+1n~'k~1 ^ Ynkn~k; lim .̂̂ ^ Ynkn~k — 1;
and, therefore, Ynkn~k ^ 1.

If n is a positive integer, / is a function from [0,1] to the
complex plane and c is a complex sequence then

L(f, c)n -

and we let Mf be a matrix such that if p is a nonnegative integer,
then

Proof of Theorem 1. Suppose that A,f,B and c are as in the
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theorem.
Let n be a positive

ML =

integer.

= /(i) +

- /(I) +

n—1

<? = 0

TO — 1

V f
2-ι v~

If each of m and g is a nonnegative integer | Σ ? = Ϊ -^ I = 21?, so
that by Lemma 2 and Lemma 3,

and

I ML I ̂  I /(I) \ + B + 2B = |/(1) I + 35 .

Suppose, now, that m is a nonnegative integer less than n.

Σ
p=-0

V

p=0 \P/ k = ρ

°° m

— V Δ V
— 2 Άk 2

p k

p-=0 \V

For each nonnegative integer k let Gk be Y^=An)n~kYpk and

note that

n
P

n

P *• p

so that G is a nonincreasing sequence. Go = 1. The sequence 1 — G
is nondecreasing and nonnegative valued, so that, for each nonnegative
integer r,

r

Σ Άfc(l — (τfc) 5j 21? ,

AkGk I ̂  4B ,
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and

and Mf satisfies condition (1) of Lemma 1.
Let c have limit d. M (c — d) converges, L(f, c) = M (c — d)

+ L(f, d), so that L(f, c) converges with limit ^p=,QAp(cp — d) + d-f(l).

THEOREM 2. Suppose that f is a function from [0,1] to the
complex plane and f is continuous on [0,1). Suppose that, for each
absolutely convergent sequence c, L(f, c) converges. Then there is a
complex sequence A such that Σ?=o Ap is bounded and, if x is in
[0,1),

Proof. Since each sequence dominated by a geometric sequence
with ratio less than 1 is absolutely convergent, we know from [3,
Th. 3] that there is a complex sequence A such that if x is in [0,1)
then f(x) = Σ7=oApx

p, and Ap is the limit of the sequence Mf[ , p].
By Lemma 1 there is a positive number B such that if each of n

and m is a positive integer then | Σ™=0 Mζp \ ̂  B, and, consequently,

THEOREM 3. Suppose that c is an infinite complex sequence such
that, for each function f, analytic on the unit disc and defined at
1, such that Σ?=o/(ί?)(O)/p/ is bounded, L(f,c) converges. Then c is
absolutely convergent.

Proof. Suppose that Σ^U I £2p+1 — c2p | is not bounded.
Let ^l be the set of all functions / as described in the theorem

such that /(I) = 0. For each member / of ^l let N(f) be the least
number L such that if n is a nonnegative integer then

< L
p=0

o, N} is a complete, normed linear space.
For each positive integer n let Tn be the continuous linear trans-

formation from j^l to the plane such that if / is in j^l then Tn(f)
= L(f,c)n. By the "principle of uniform boundedness '' there is a
number B such that if / is in ^ and N(f) ̂  1 then | Tn(f) \ ̂  B
for each positive integer n.

Let m be a positive integer such that ΣϊU I c2̂ +i — c2p \ > 2B.
Let A be a sequence such that AQ = Aλ = 0 and if p is a positive
integer then A2p+1 = — A2p = 0 if c2p+1 = c2p or p > m and
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otherwise.

Let / be the polynomial such that if z is a complex number then

f(z) = Σ {ΛP+
0

/ is in &l and N(f) <£ 1. By Theorem A there is a positive integer
n such that

— V A o < Σ I c p ϊ + 1 -

so that

\L(ffc)n\> Σ - Σ - c2
= 2B > B ,

which is a contradiction. So Σ?=o I c2p+1 — c2p \ is bounded.
Similarly ΣΓ»i IC2P — ^23)_11 is bounded. Hence Σ?=o I cp - c

converges and c is absolutely convergent.
p+ί \

BIBLIOGRAPHY

1. A. Jakimovski, Some Remarks on the moment-problem of Hausdorff, J. London Math.
Soc. 33 (1958), 1-13.
2. J. S. MacNerney, Hermitian moment sequences, Trans. Amer. Math. Soc. 103
(1962), 45-81.
3. P. C. Tonne, Power-series and Hausdorff matrices, Pacific J. Math. 2 1 (1967),
189-198.

Received January 9, 1968.

EMORY UNIVERSITY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. ROYDEN
Stanford University
Stanford, California

J. P. JANS

University of Washington
Seattle, Washington 98105

J . DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS

University of California
Los Angeles, California 90024

E. F. BECKENBACH

ASSOCIATE EDITORS
B. H. NEUMANN F. WOLF K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, double spaced with large margins. Underline Greek
letters in red, German in green, and script in blue. The first paragraph or two must be capable
of being used separately as a synopsis of the entire paper. It should not contain references
to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four
editors. All other communications to the editors should be addressed to the managing editor,
Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price
per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual
faculty members of supporting institutions and to individual members of the American Mathe-
matical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17,
Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,

but they are not owners of publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics
Vol. 26, No. 2 December, 1968

Seymour Bachmuth and Horace Yomishi Mochizuki, Kostrikin’s theorem on
Engel groups of prime power exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Paul Richard Beesack and Krishna M. Das, Extensions of Opial’s
inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

John H. E. Cohn, Some quartic Diophantine equations . . . . . . . . . . . . . . . . . . . 233
H. P. Dikshit, Absolute (C, 1) · (N , pn) summability of a Fourier series and

its conjugate series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Raouf Doss, On measures with small transforms . . . . . . . . . . . . . . . . . . . . . . . . . 257
Charles L. Fefferman, L p spaces over finitely additive measures . . . . . . . . . . . 265
Le Baron O. Ferguson, Uniform approximation by polynomials with integral

coefficients. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Takashi Ito and Thomas I. Seidman, Bounded generators of linear

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Masako Izumi and Shin-ichi Izumi, Nörlund summability of Fourier

series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Donald Gordon James, On Witt’s theorem for unimodular quadratic

forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
J. L. Kelley and Edwin Spanier, Euler characteristics . . . . . . . . . . . . . . . . . . . . 317
Carl W. Kohls and Lawrence James Lardy, Some ring extensions with matrix

representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Ray Mines, III, A family of functors defined on generalized primary

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Louise Arakelian Raphael, A characterization of integral operators on the

space of Borel measurable functions bounded with respect to a weight
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Charles Albert Ryavec, The addition of residue classes modulo n . . . . . . . . . . 367
H. M. (Hari Mohan) Srivastava, Fractional integration and inversion

formulae associated with the generalized Whittaker transform . . . . . . . . 375
Edgar Lee Stout, The second Cousin problem with bounded data . . . . . . . . . . 379
Donald Curtis Taylor, A generalized Fatou theorem for Banach

algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Bui An Ton, Boundary value problems for elliptic convolution equations of

Wiener-Hopf type in a bounded region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Philip C. Tonne, Bounded series and Hausdorff matrices for absolutely

convergent sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Pacific
JournalofM

athem
atics

1968
Vol.26,N

o.2

http://dx.doi.org/10.2140/pjm.1968.26.197
http://dx.doi.org/10.2140/pjm.1968.26.197
http://dx.doi.org/10.2140/pjm.1968.26.215
http://dx.doi.org/10.2140/pjm.1968.26.215
http://dx.doi.org/10.2140/pjm.1968.26.233
http://dx.doi.org/10.2140/pjm.1968.26.245
http://dx.doi.org/10.2140/pjm.1968.26.245
http://dx.doi.org/10.2140/pjm.1968.26.257
http://dx.doi.org/10.2140/pjm.1968.26.265
http://dx.doi.org/10.2140/pjm.1968.26.273
http://dx.doi.org/10.2140/pjm.1968.26.273
http://dx.doi.org/10.2140/pjm.1968.26.283
http://dx.doi.org/10.2140/pjm.1968.26.283
http://dx.doi.org/10.2140/pjm.1968.26.289
http://dx.doi.org/10.2140/pjm.1968.26.289
http://dx.doi.org/10.2140/pjm.1968.26.303
http://dx.doi.org/10.2140/pjm.1968.26.303
http://dx.doi.org/10.2140/pjm.1968.26.317
http://dx.doi.org/10.2140/pjm.1968.26.341
http://dx.doi.org/10.2140/pjm.1968.26.341
http://dx.doi.org/10.2140/pjm.1968.26.349
http://dx.doi.org/10.2140/pjm.1968.26.349
http://dx.doi.org/10.2140/pjm.1968.26.361
http://dx.doi.org/10.2140/pjm.1968.26.361
http://dx.doi.org/10.2140/pjm.1968.26.361
http://dx.doi.org/10.2140/pjm.1968.26.367
http://dx.doi.org/10.2140/pjm.1968.26.375
http://dx.doi.org/10.2140/pjm.1968.26.375
http://dx.doi.org/10.2140/pjm.1968.26.379
http://dx.doi.org/10.2140/pjm.1968.26.389
http://dx.doi.org/10.2140/pjm.1968.26.389
http://dx.doi.org/10.2140/pjm.1968.26.395
http://dx.doi.org/10.2140/pjm.1968.26.395

	
	
	

