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ON A THEOREM OF MERGELYAN

JOHN GARNETT

The following is a theorem of S. N. Mergelyan.

THEOREM. If X is a compact plane set with finitely many
complementary components, then every continuous function on
X which is analytic on the interior is a uniform limit on X of
rational functions.

Here two short proofs of the theorem are given. Both
proofs are obtained by considering the measures on X
orthogonal to the algebra of rational functions.

Let X be a compact plane set and suppose its complement C\X
has finitely many components. In 1951 Mergelyan [9] proved:

MERGELYAN'S THEOREM. Every function continuous on X and
analytic on the interior is uniformly approximable by rational
functions.

By examining the measures on X orthogonal to the rational
functions, Glicksberg and Wermer [6] have found an elegant proof
of Mergelyan's Theorem in the case C\X connected. Their argument
has recently been extended by Ahern and Sarason [1] and by Glicksberg
[5] to give functional analytic proofs of the general Mergelyan result.
However those proofs are quite long. Here we give two shorter proofs
of the theorem. The first proof begins with the known fact that
the question of approximation is a local one, and the theorem is
thereby reduced to the simply connected case. The second proof
follows the reasoning of [6]. Here we use some results from [1] and
[5], but avoid the more lengthy arguments in those papers. Though
longer than the first, this second proof is included because the ideas
therein yield related results not accessible via our first proof.

Denote by A{X) the Banach algebra of functions continuous on
X and analytic on X\ the interior. Let R(X) be the closed subalgebra
of A(X) spanned by the rational functions analytic on X. By a meas-
ure on X we mean a finite complex Borel measure on X. Write
μ i_ R(X) is μ is a measure on X orthogonal to R{X), and μ JL A(X)
if μ annihilates A(X) as well. As have several previous authors, we
prove the Mergelyan Theorem by showing μ _l_ R(X) implies μ JL A(X).

2. The first proof• We quote the following lemma of Bishop
[3, p. 40], This lemma was stated polynomials, but Bishop's proof is
valid for rational functions.

461



462 JOHN GARNETT

LEMMA 2.1. (Bishop). Let X be a compact subset of C. For x
a real number, set

Lx = X Π {z: Real z ^ x}, #* = X Π {z: Realz ^ x).

Let μ 1 i?(X). Then for almost all x there are measures vί on Lx

and vz on Rx such that vγ l R(LX), v2j_ R(RX) and μ — vx + v2.

This lemma gives the known result that questions concerning
R(X) are local ones.

COROLLARY 2.2. Let f be a continuous function on the compact

set X. Assume each point in X has a closed neighborhood K such

that the restricted function f\K is in R(K). Then f is in R(X).

Proof. Let μ be a measure orthogonal to R(X) and let {Uu U2,
• , Un) be any finite open cover of X. It follows from repeated
applications of 2.1 that there are finitely many compact rectangles
{Tu •••, Tm) and measures v5 on T3 such that

( i ) Tjd Ui for some i
(ii) VjlRiTj)

(iii) μ = Σ?=i Vj.

If / satisfies the hypotheses, then using such a decomposition we see

that [fdμ = 0. This implies feR(X).

Actually we can localize measures as in the proof of 2.2 without
appealing to Bishop's lemma. Instead we use an observation shown
us by A. Browder, who credits it to K. Hoffman. For a measure
μ on X define its Cauchy transform

μ(a) = yz-a)

Then μ is locally integrable with respect to plane Lebesgue measure.
Also μ = 0 almost everywhere if and only if μ — 0. See [11]. The
observation, whose proof we only sketch, is this:

(a) μ _L R(X) if and only if μ = 0 on C\X. This is seen by taking
partial fractions and by "pushing poles together."

(b) An application of Green's theorem yields, for φ a C°° function
with compact support,

φμ = φμ + σ where σ — (2rμ(z)dz A dz .
2πi dz

Now if μ 1 R(X) and K is the closed support of φ, then by (a) and (b),

φμ + σ 1 R(X Π K) .
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Letting φ run through a finite partition of unity {φj}f=ι and setting
i). = φ μ -f l/2πi dψj/dz μ(z)dz A dz we obtain a decomposition of μ
satisfying (i), (ii) and (iii) in the proof of 2.2.

Proof of theorem. Let Hlf H2, , Hn be the bounded components
of C\X and let feA(X). For each point in X choose a compact
neighborhood K with diameter less than the diameter of each H3.
Then C\K is connected and f\ K is in A(K). Thus by [6], f\K is in
R(K). Hence / is in R(X) by 2.2.

We note that this proof is still valid when C\X has infinitely
many components but the diameters of these components are bounded
below. Examples of such sets are easily constructed.

3* The second proof* By the maximum modulus principle A(X)
can be identified with the algebra of boundary values of functions in
A(X). We will view A(X) as a closed algebra of continuous functions
in dX, the boundary of X, and we consider now only measures supported
on d(X).

We begin with a theorem of Walsh [10] and Lebesgue [8]. A
more recent proof is contained in the first three lemmas of [4].
CR(dX) is the space of real continuous functions on dX, and Real
R(X) is the space (restrictions to 3X) of real parts of functions in
R(X).

WALSH-LEBESGUE THEOREM. Let HlfH2," ,Hn be the bounded
components of C\X and let aό e H3. Then Real R(X) φ Span {log \z — a3 \:
1 ίg j ^ n} is uniformly dense in CR(dX).

This means the space of real measures on dX orthogonal to R(X)
has dimension at most n. It also means the Dirichlet problem is
solvable on X; if ue CR(dX) then there is a unique u in CR(X)
harmonic on X° with u = u on dX. Hence for zeX there is a unique

probability measure Xz on dX such that u(z) = I udxz for all u e CR(dX)
JdX

It follows directly that Xz is a representing measure for A(X), as λ2

is positive and

f(z) = \ fd\z for all feA(X) .
Jdx

It also follows that Xz is an Arens-Singer measure for A(X),

log I f(z) \ = \ log I /1 dXz for fe A(X) and λ e A(X) .

Jθx f
Moreover the Walsh-Lebesgue theorem implies that λz is the unique
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Arens-Singer measure for R(X). Consequently the assumptions of the
paper [1] of Ahern and Sarason apply to R(X). We now state a lemma
of theirs and some immediate consequences. All except Corollary 3.4
are proven on pp. 126-128 of [1].

LEMMA 3.1. (Ahern-Sarason). Let (vn)Z=ί be a sequence of non-

negative functions in CR(dX) with \vndXz —>0. Then there is a sub-

sequence (un)~=1 and a sequence (/Λ)~=i of functions in R(X) such that

\fn\ ^ β~Wn and /»—*1 almost everywhere Xz.

COROLLARY 3.2. (F. and M. Riesz Theorem). If zeX and
μ ± R(X), let μ — μz + μz be the Lebesgue decomposition of μ with
respect to Xz. Then μz _L R(X) and μz 1 R(X).

COROLLARY 3.3. For ze X, every representing measure on dX for
z is absolutely continuous with respect to Xz. In particular, when
z G dX, the only representing measure is the point mass at z.

The next corollary is a consequence of the F. and M. Riesz theorem,
and is Theorem 2.8 of Glicksberg's paper [5].

COROLLARY 3.4. If μ L R{X), then there is a sequence («n)»=1 in
X such that

where the series converges in norm, each term is orthogonal to R(X),
μZn is absolutely continuous with respect to XZn and μs is singular
with respect to all representing measures.

Proof. First take the "simultaneous Lebesgue decomposition of
μ with respect to all λz." That is, let c = sup {|| μz\\ : z eX} and
choose z1 so that \\ μn\\ > c/2. Take the Lebesgue decomposition
μ = μzi + μz^ Repeating the argument with μZl and continuing by
induction yields a decomposition (1), in which μs is singular with
respect to all λβ.

By Corollary 3.2, μZl±_R(X), and so by induction every μZn (and
hence μs as well) is ortogonal to R(X). Finally by Corollary 3.3, μs

is singular with respect to every representing measure.
From Corollary 3.4 we see that to show any μ e (R(X))1 annihilates

A(X) it suffices to consider the case when μ = μz for some z and the
case when μ is singular with respect to all representing measures.
The latter case is settled by the following argument of Wilken [12],
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valid for any compact plane set.

LEMMA 3.5. (Wilkeri). Let X be any compact plane set and let
μ _L R(X). If μ is singular with respect to all representing measures
then μ — 0.

Proof. A s i n [ 1 2 ] , t h e r e i s a p o i n t z e X s u c h t h a t

!iί£I < oo and

Then the measure v = 1/c μ(Q/z — ζ is a complex measure representing
s; so that by [7] there is a positive representing measure m for 2
absolutely continuous with respect to | v |. Then m is absolutely
continuous with respect to \μ\ and the assertion obtains.

For our analysis of the absolutely continuous orthogonal measures
we need two more lemmas. For ze X, write λ = λ2, and let H2(R(X))
be the closure of R(X) in L2(λ). Set H°°(R(X)) = H2(R(X)) n L~(λ).
Define iΓ(A(X)) and iϊ~(A(X)) analogously. The first lemma is from
Ahern and Sarason [1] and follows directly from Lemma 3.1 by an
argument of Hoffman and Wermer. (See also [5] and [11].)

LEMMA 3.6. // h is in H°°(R(X))y then there is a sequence (fe»)ϊ=i
in R(X) with | |/^ | |«>^ II^IU and hn-+h almost everywhere λ.

The second lemma is a minor variation of Glicksberg's Lemma
3.16 of [5]. The proof is due to T.W. Gamelin and the author.

LEMMA 3.7. H\R(X)) = H\(A(X)).

Proof. Let H2

Q(R(X)) be the space of complex conjugates of
functions in H2(R(X)) having integral zero. Since λ is multiplicative
on R{X), L2(X) has the following orthogonal decomposition:

L2(λ) = H\R{X)) © Hl(R(X)) 0 E .

The space E is spanned by the real functions in L2 annihilating R(X)
and thus by the Walsh-Lebesgue theorem E is finite dimesional. Also
λ is multiplicative on A(X), so an orthogonality argument gives

H\R{X)) c H\A{X)) c H\R{X)) © E «

This means H2(A(X)) = H\R(X)) φ N where N is finite dimensional.
Let G19 Gr2, , Gp be an orthonormal basis of N and for an appropri-
ately small ε choose gu g2, , gp in A(X) with || gs — G31|2 < ε. Let
J be the span of {gl9 , gp}. Then
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H\A{X)) = H2(R(X)) + J

where the sum is direct but not necessarily orthogonal. Let Pj be
the projection of H\A{X)) onto J which is zero on H\R(X)) For
feR(X) and geJ define Tf(g) = PΛfg). Then T is a representation
of R(X) on J. Since iu(X) is commutative and J is finite dimensional
there is a common eigenvector g e J. Therefore for fe R(X) we have

(2) fg = φ(f) g + r

where r e H\R{X)) and φ(f) e C.
Clearly φ is a multiplicative linear functional on R{X), so that

there is a point z,eX such that ?>(/) = / ( ^ ) for all fεR(X). Also
because # is bounded 9? extends continuously to H2(R(X)) and so there

is an î G L2(λ) such that ffa) = 1 fFdX. Hence by (7) Zi has a positive

representing measure absolutely continuous with respect to λ. By
Corollary 3.3 then z^dX.

Taking / = z in (2), we have ft = (z - zλ)g G H\R{X)) Hence there
is a sequence (ft»)Ĵ i in JB(X) converging to ft in L2(λ). Let c =

\hFdX = lim^o, ift^Fdλ. Then since sx e X°, rn = hn — KizJ/z - z1 is

in R(X) and rn converges to g — c(z — z^"1 in L2(λ). Thus

(3) g-φ-z^eH^RiX)).

If c = 0, then # e H2(R(X)) and we are done. On the other hand if
c Φ 0, then (2 - s^-1 e ίΓ2(^L(X)). Being bounded on dX, (z - z,)-1 is
therefore in H°°(A(X)). Now H°°(A(X)) is an algebra, and consequently
(z - z,)-n e H\A(X)) for all n. But H\R{X)) has finite codimension
in H2(A(X)); whence some polynomial in (z — z^"1 is in H2(R(X)).
That is

+ ••• + , n ,eH\R(X)) . (α. ̂  0) .
Z - ^ (Z- ZλY (Z - Zj

Multiplying by (z -zx)
n-1 we have (z - z,)-1 e H\RX)). By (3), then

g e H\R(X)). Therefore J - {0} and

H2(R(X)) = H2(A(X)) .

To conclude the proof of Mergelyan's theorem, let μ 1 R(X). We

can assume μ is absolutely continuous with respect to some λβ. Let

ft G A{X). Then by 3.7 ft e H\R(X)) and so by 3.6 there is a sequence

(K)n=ι in i2(X) converging boundedly pointwise to ft almost everywhere

ftnc£μ — 0, dominated convergence implies \hdμ = 0 and μ is

orthogonal to A(X).
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We should remark that the proof of Lemma 3.7 actually shows
that H°°(R{X)) is maximal among the subalgebras of L°°{\) on which
λ is multiplicative. This means that one can compute the defect of
Real R(X) in CR(dX) and obtain the other results that Ahern and
Sarason do in [2] without using the deeper theorems of their earlier
paper [1],

Added in proof. After a closer reading of the literature we have
found that the proof of Mergelyan's theorem in § 2 was essentially
given by Laura Kodama in "Boundary measures of analytic differentials"
Pacific J. Math., 15 (1965), 1261-1277.

We wish to thank T. W. Gamelin and K. Hoffman for helpful
conversations.
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