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The purpose of this note is to prove that if in a semi-
primary ring A9 every simple module that is not a projective
Λ-module is an injective Λ-module, then A is a semi-primary
hereditary ring with radical of square zero. In particular,
if A is a commutative ring, then A is a finite direct sum of
fields. If A is a commutative Noetherian ring then if every
simple module that is not a projective module, is an injective
module, then for every maximal ideal M in A we obtain
Ext1 {AjM, AjM) = 0. The technique of localization now implies
that gl.dim A = 0.

1* We say that A is a semi-primary ring if its Jacobson radical
N is a nilpotent ideal, and Γ = ΛjN is a semi-simple Artinian ring.

Throughout this note all modules (ideals) are presumed to be left
modules (ideals) unless otherwise stated. For any idempotent e in A
we denote by Ne the ideal N Π Ae.

We discuss first semi-primary rings A with radical N of square
zero for which every simple module that is not a projective module
is an injective module. We shall study the nonsemi-simple case, i.e.,
NΦO.

Under this assumption JV becomes naturally a Γ-module.
Let e, e' be primitive idempotents in A for which eNe' Φ 0. In

particular Ne' Φ 0* From the exact sequence 0—>Ne'—*Ae' —>S'—>0,
it follows that S' is not a projective module since Ae' is indecomposable.
Since S' is a simple module it follows that S' is an injective module.

Next consider the simple module Ae/Ne = S. Since eNe' Φ 0,
since Ne' is a Γ-module, and since on N the Γ-module structure and the
Λ-module structure coincide, Ne' contains a direct summand isomorphic
with S. This gives rise to an exact sequence 0—>S—>Λe'~*K—»0
with K Φ 0. If S were injective this sequence would split, and this
contradicts the indecomposability of Ae'. Therefore S is a projective
module.

Hence Ne' is a direct sum of projective modules, therefore Ne'
is a projective module. The exact sequence 0—> Ne'—> Ae! —> S'—>0
now implies ϊ.p.dim S' ^ 1, and since S' is not a projective module,
then ϊ.p.dim S' = 1.

Hence ϊ.p.dim^ Γ = 1, and this implies that A is an hereditary
ring (i.e., l.gl.άimA = 1) [1].

Conversely, assume that ί.gl.dim A = 1. Every ideal in A is the
direct sum of Nu -•-,Nt where Nλ is contained in the radical, and
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the others (if any) are components of A, i.e., Nt = Ae{ where e2, , et

are primitive orthogonal idempotents in A [4].
Let Γe' be any simple Λ-module. Since Nλ c N, Nt is a Γ-module.

Since on N the Γ-module structure coincides with the Λ-module
structure, it easily follows that there exists a nonzero map of Nt

onto Γe' if and only if Γef (up to isomorphism) is a direct summand
of Nlm This in particular implies that Γef is a protective Λ-module,
since then Γer is isomorphic to an ideal. If Γe' is not a protective
Λ-module, it follows that Hom^ (JVΊ, Γe') = 0. As a consequence,
every map from an ideal in A into Γe', extends to a map of A into
/V, hence Γe' is an injective Λ-module.

This proves:

THEOREM A. Let Λ be a semi-primary ring with radical of
square zero. Then every simple A-module that is not a protective
A-module is an injective Λ-module if and only if A is a hereditary
ring.

If A is a semi-primary ring with radical N and N2 Φ 0, then a
simple module is protective if and only if it is isomorphic to a
component, hence if Ae/Ne is a protective module Ne = 0, and the
idempotent e, when reduced modiV2 (i.e., in A/N2) will still give rise
to a protective module. If Ae/Ne is an injective module e will give
rise to an injective Λ/ΛP-module. This will follow from the following
two lemmas:

LEMMA 1. Let e, e' be primitive idempotents in Λ. Then Ae is
isomorphic to Ae' if and only if Hom^ (Ae', Ae/Ne) Φ 0.

Proof. If Ae is isomorphic to Ae' then obviously

Horn, (Λe', Ae/Ne) Φ 0 .

Conversely, let /: Ae' —> Ae/Ne be a nonzero map. Since Ae/Ne is
a simple module / is an epimorphism. Denote by π the canonical
projection π: Ae —> Ae/Ne then since Ae' is a projective module there
exists a map g: Ae' —* Ae such that / = π © g. Since π(Ne) = 0, it follows
that g is an epimorphism. Since Ae is a projective module and Ae'
an indecomposable module g is an isomorphism.

LEMMA 2. Lei S δβ αw injective simple A-module and I an
ideal that is contained in the radical. Then ΈίomΛ(I, S) = 0.

Proof. Let / be a nonzero map of / into S. Since S is an
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injective A module it follows that / extends to a map of A onto S,
f:A-+S, but this implies that f(N) = 0. Since f(I)<zf(N) this is a
contradiction. Therefore every map of / into S is the zero map.

THEOREM B. Let A be a semi-primary ring then the following
are equivalent:

( i ) A is an hereditary ring with radical of square zero.
(ii) Every simple module that is not a protective A-module is

an injective A-module.

Proof. That (i) implies (ii) follows from Theorem A.
( i i ) = » ( i ) : Let eu ,et be a complete set of orthogonal

idempotents, i.e., each β< is a primitive idempotent, and

A = Ae1 + + Aet .

Set Si = Aei/Nβi. We denote by elf *, et the images of eu , et in
A/N2 under the canonical epimorphism A —• A/N2. Then Slf , St

may be viewed as simple J/AP-modules, and every simple Λ/iSP-module
is necessarily isomorphic with some S{. If Sj is Λ-projective then
Ned = 0, and necessarily S3- is Λ/AP-projective. If Sj is Λ-injective
then we claim that Sj is Λ/iSP-injective. It suffices to prove that for
any ideal Γ in A/N2, and any Λ/i\P-map / from / ' to Sj, /extends to
a map of A/N2 into Sj. Since / ' is a direct sum of ideals Iu •••, Γτy

II c N/N2 and the others (if any) are components of A/N2, we will
be done if we prove that Ή.omΛίN2 (/", Sd) — 0 whenever / " c N/N2.
Let I be the inverse image of I " under the homomorphism A-+A/N2,
then ϊίomΛ(I,Sj) = 0 since IaN (Lemma 2). If we denote by h the
map I-+I" (restriction of the canonical projection) and if / is any
map of / " into Sά then if / is not the zero map, /© h from / into
Sj is a nonzero Λ-map of I into Sd. This contradiction implies that
Sj is an injective Λ/iSP-module.

By Theorem A it now follows, since A/N2 is a semi-primary ring
with radical of square zero, that ϋ.gl.dim A/N2 ^ 1. This necessarily
implies that N2 = 0 [2].

Remark that if all simple modules are projective modules, or if
all simple modules are injective modules, then A is a semi-simple
ring [1].

Finally, if N Φ 0 then there exist a simple projective (injective)
module that is not an injective (projective) module.
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