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In this paper we show that there is a one to one cor-
respondence between systems of functions defined on a finite
set A and systems of predicates defined on A. This result
implies that a complete set of invariants for a universal
algebra on A is given by predicates defined on A. Conversely
functions on A provide a complete system of invariants for
sets of predicates closed under conjunction, change of variable
and application of the existential quantifier.

We begin in § 2 by giving a definition of closure for systems of
functions and predicates. This is followed by a definition of com-
mutivity of a function and a predicate which gives a correspondence
between the two types of systems. In Theorems 1 and 2 of §3 we
show that the correspondence is a Galois connection. In Theorem 3
we consider sets of predicates closed under the existential quantifier
and show that the corresponding systems are determined by functions
defined for all values of the arguments. In Theorems 4 and 5 we
include disjunction and then negation in the definition of closure of
a set of predicates. We also require that equality be among the
predicates. The corresponding systems consist of essentially first
order functions and essentially first order permutations respectively.
We conclude in § 4 with some comments on the infinite case and some
general comments on these results.

2. Basic definitions. Associated with any subset of A"*!, the
set of all sequences of length n + 1 with elements in A4, is the n-th
order function f(x, ---,x,) which may be many valued and may not
be defined on all of A*. A system of functions .2© is defined to be
closed if the following conditions are satisfied:

(i) <~ is closed under composition.

(ily If f(x, ---,2,) € < is associated with the subset Pc A*"*

then any ¢(x, ---, ,) associated with Q C P is in &~.

(ili) For any m, & contains all functions f defined on A" such

that f(x), -+, 2,) = ;.

In defining closed systems of predicates the author has the follow-
ing model in mind. We are given a sequence A4,, 4,, 4,, --- of sets
of predicates, each A, containing all subsets of A°. For each A4; a
set of operators isomorphic to .&%; the symmetric group is given which
maps A; onto A,. These correspond to permutations of the variables
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of predicates in A;. There is an operator R: A;.,— A; which takes
P{(xy, +++, %;0) to P(xy, &, %y, -++, %) and an operator E: A;.,— A4;

which takes P(x,, ---, %;:;) to @¥)P(y, x,, -+, ;). Also there is an
operator A: A;— A,,, which corresponds to the cartesian product with
A or to the introduction of a dummy variable. Thus (x;, ---, 2;.,) € AP

if and only if (x,, ---, %;3,) € P. A predicate in A; will be said to have
order i. A system .7 of predicates is defined to be closed if it satisfies
the following conditions:

(i) If Pes” and Qe & and P and Q have the same order then

PnQes .
(ii) If Pe.o” then any predicate obtained from P by permuting
the variables is in 7.

(iii) If Pe.” then AP and RP are contained in 7.

(iv) .&” contains the first order predicate A.

Now we define commutivity of a function and a predicate. Let
M be an n x m matrix with elements in A, then we write MC P
where P is an m-th order predicate if each row of M is a sequence
contained in P. If N is an m X % matrix and f is an n-th order
function then f(N) is the m x 1 column matrix obtained by letting
f operate on each row of N. If f is not defined for some row of N
we say that f(N) is not defined. The predicate P commutes with
the function f if for every M c P the row matrix f(M7)* when
defined is a sequence contained in P. Here M7 is the transpose matrix
of M. If &¥ and &7 are systems of functions and predicates we
write <°* and &7* for the systems of predicates and functions respec-
tively which commute with & and .2~.

3. Main results. It can be verified that <~* and .&”* are closed
systems. We will show that if < and &7 are closed systems then
& = and P = FHE,

THEOREM 1. If ¥ s a closed system of functions then & =

Since ¥ < &** we need only show that for any function
g(x, +++, 2, not in <& there exists a predicate in &* which does
not commute with g. Assume that ¢ is defined only on the sequences
Sy, Sgy + o+, S5 We form the k¥ x m matrix T with ¢-th row equal to
s;. For any function f(x, ---,2,) in & and any k X » matrix F
with columns taken from T we form the column matrix f(F). If
Sf(F) is not a column of T we adjoin it to T and get a k x (m + 1)
matrix 7,. In this way we can adjoin columns to T until we finally
reach a matrix T, with k£ rows such that for any function f in &
and any matrix F with columns from T, the column matrix f(F)
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will be in T, if it is defined. If ¢g(T) is a column of T, then ¢ can
be derived from functions in & so we can assume that g(T) is not
in T,. From T, we form the k-th order predicate P, which contains
all the rows of T?. It is evident that P, is in &* but does not
commute with g. Thus & = &7**,

THEOREM 2. If &2 1is a closed system of predicates then F° =
FPHE,

Since «&# < &*** we need only show that for any mn-th order
predicate @ not in & there exists a function in Z”* which does not
commute with @. Let P be the intersection of all n-th order predi-
cates of & which contain Q. Let s, s, ---,s, be all the 1 x n
matrices contained in Q and let N be the k x % matrix with ¢-th row
s;. Let ¢t be any row matrix in P but not in Q. Then there exists
a k-th order function f defined only on the rows of N’ such that
SINT) =", We wish to show that any predicate in & commutes
with f. By way of contradiction suppose that the m-th order predi-
cate P, ¢ .&” does not commute with f and that every predicate obtained
from P, by identification of wvariables does commute with f. Then
there exists a 7 X m matrix N, C P, such that f(NT) =1t and ¢ is
not contained in P,.

Since every identification of variables in P leads to a predicate
which commutes with f we must have that each pair =, f(r)i =
1, ..., m where r; is the i-th row of NT and f(r;) is the corresponding
element of ¢, is distinct from any other pair r;, f(r;). Thus each
pair is the same as a row element pair taken from N7 and t. We
can find a £k x n matrix N,c A ™P, and row matrix ¢, such that the
last m rows of NT and elements of ¢ are equal to r;, f(r;). Also
the first n-m pairs can be chosen so that there is a one to one cor-
respondence between pairs taken from N7, ¢ and pairs taken from
N7T,t¥. By permuting the variables of A" ™"P, we can arrive at a
predicate P, which contains N and does not contain ¢t. Since P, is in
7 we get that P is not the least n-th order predicate which contains
Q. Thus we have a contradiction and f must commute with every
predicate of &°. Thus & = GF7**,

Now we consider systems of predicates which are closed under
the existential quantifier. Let ¢ be a closed system of functions
and assume that for any f(x, ---,2,) € & with restricted domain of
definition, there exists a g(x,, - - -, #,) € & which is defined on all of A"
and equals f where f is defined. Then it can be verified that <~*
is closed under the existential quantifier.

THEOREM 3. If &7 is a closed system of predicates which is
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closed wunder the existential quantifier then every fumnction in *
can be extended to a function in F* which 1s defined for all values
of the arguments.

We assume that the elements of 4 are the integers from 1 to .
Let f(x, -+, 2, € P* be defined on the sequences s,, s, -+, s, and
let s be any other sequence in A™. We define the n functions f;
such that f(s;) = f(s;) and fi(s) =1 for ¢ =1, ---,n and show that
for some 1, f; is in &*. By way of contradiction suppose that for
each f; there exists a P, D> N; where P,e .&” and N, is a matrix such
that f,(N7?)T is not in P, We can assume that each N, has s’ in
the first column and every other column is an s?, if N; has more than
one occurence of s” then by identifying variables in P; we can arrive
at a new P; which has only one occurence of s? in the corresponding
N;. Also after permuting the variables of P; we can assume that s’
occurs as the first column of N,. Let

Pl(xy Ly, "'yxp)y Pz(xy Yy o vy yq), "'fon(xy Ry "')zr)

be the predicates which satisfy these conditions, since & is closed
the predicate P(x, x,, «++, %y, Y1, =+, Yqy *++*, 21, -+ *, %,) €quivalent to
the conjunction of the P; is in &”. Also P contains a matrix N
derived from the N; with first column s” and each remaining column
equal to an s?. Now EP contains the matrix N, which is N with its
first column deleted. Since EP is in &% we have that f(N7)" is in
EP. Thus P contains a sequence %, f(N7)" for some ¢. But this
contradicts the assumption that f;(N7)” is not in P;. Thus f can be
extended to a function defined for all values of the variables.

Now we consider single valued functions which are defined for
all values of their arguments. If & is a system of predicates we
redefine . 77* as the set of single valued functions defined for all values
of the arguments which commute with 2. Also we assume that &
is closed, contains e(x,, 2,) = (¥, = x,) and is closed under the existential
quantifier. We will give necessary and sufficient conditions on .&°*
in order that .&# be closed under disjunction and negation.

First we define the predicates D(x,, ,, @;, ) = (€, = %) V (¥, = )
and Q,(x, ---,®,) which holds in case #; # 2, for all 1 <7 <j < n.
We have the following equivalences for a closed system .27,

(1) ”* consists of essentially first order functions if and only
if De .

(2) When &7 is defined on a set A with n elements then .°*
consists of essentially first order permutations if and only if D, Q, € &°.

We only prove that if De.Z? then <2* consists of essentially
first order functions. Let g(z,, ---,2,) be a function in Z* which
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depends essentially on the variables #, and «,. Then there exist
sequences (@, y, +=+, @,) = 8, (Qy, Ay, +++, Q) = S;, (b, by, +++,b,) = s,
and (b,, by, b, ---,b,) = s, such that g(s,) # g(s,) and g(s;) = 9(s,). We
construct the 4 x m matrix M with ¢-th row s;. Then M7 c D but
g(M)" is not in D so g cannot be in &”*. The other implications
also follow eagily. From these equivalences we get:

THEOREM 4. .&° is closed under disjunction if and only if ~*
consists of essentially first order functions.

THEOREM 5. &7 is closed under megation if and only if 7*
consists of first order permutations.

4. Comments and applications. First we consider the case
where A is an infinite set. Craig R. Platt has found in this case
that we need to add the following condition to the definition of closure
of a set of functions or predicates. A set of functions & is locally
closed if, for any n-th order function ¢ and for every finite H C A"+!
there exists an f €. such that gNn H= f N H, then ge &¥. A
similar definition is given for sets of predicates. Then it follows, if
<7 and &7 are any sets of functions and predicates, that .&* and
7* are locally closed sets and Theorems 1 and 2 hold when &~ and
7 are locally closed. Also a theorem has been found in the infinite
case which specializes to Theorem 3.

Theorems 1 and 2 can be summarized in the following way. Let
& and .&° be the sets of all functions and predicates on a set and
let C be a binary relation which holds between elements in &~ and
& if and only if they commute. Then C is a difunctional relation
[1, p. 193] that is CC*C = C. Here C* is the converse relation to
C. Then CC* and C*C are congruence relations on & and & and
C establishes a one to one correspondence between the congruence
classes. Alternately we may say that there exists a set S and map-
pings ¢: .2 — S and 7: .&” — S such that two elements fe & and
Pe 2” commute if and only if 4(f) = w(P).

In [2] Post has given a classification of two valued systems of
functions. This gives a classification of two valued systems of predi-
cates containing equality and closed under the existential quantifier.
Finding these systems can be simplified using theorems of this paper.

The author wishes to thank the referee for his suggestions.
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