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A space (X, τ) which satisfies a topological property P is
said to be minimal-P if T = {τ' \ τ' is a P-topology on X;
τ' S ~} = 0 For example, a Hausdorff space (X, τ) is minimal
Hausdorff if there exists no Hausdorff topology on X which
is strictly weaker than τ. The purpose of this paper is to
show that for certain properties one need only consider a
subset of T " induced " by τ to determine if (X, τ) is minimal-P.

Notation. Let β be an open base for the space (X, τ). τβ will
denote the topology on X generated by the subbase {X\ClτB \Be β}.

REMARK. J. de Groot in his investigation for a general classifica-
tion of Baire spaces considered the above topologies (cf. [1], [4]).
These topologies have come to be known as co-topologies.

DEFINITIONS. A filter base is regular if it is open and equivalent
to a closed filter base.

A filter base ^/ is Urysohn if for each nonadherent point α, there
exists a neighborhood V and Ge <%S such that Ci rFίΊ ClτG = 0 .

REMARK. In this paper, the Bourbaki convention for the topolo-
gical separation properties will be observed; specifically, all spaces are
assumed to be Hausdorff.

The proof of the following lemmas are left to the reader. A proof
for the regular case of Lemma 1 is similar to the proof of Theorem
2 in [3].

LEMMA 1. Let (X, τ) be a Hausdorff (Urysohn) regular) space;
let Ήf = {Ua}aeA be a nonconvergent open (Urysohn; regular) filter
base with unique adherent point xo; let β — ,yj^ U ^/^ where

^Γ = {N\Neτ and x0 e ClτN}

and

^/f = {M\Meτ and MaX\ClτUa for some aeA} .

Then (i) β is a base for τ; and
(ii) τβ is a Hausdorff (Urysohn; regular) topology strictly
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weaker than τ.

LEMMA 2. Let (X, τ) be a normal {completely normal) space;
let ^ be a nonconvergent regular filter base with unique adherent
point xo; let β be defined as in Lemma 1. Then τβ is a normal
(completely normal) topology strictly weaker than r.

In the following theorem P denotes any of the following proper-
ties: (i) Hausdorff, (ii) Urysohn, (iii) regular, (iv) completely regular,
(v) normal, (vi) completely normal, (vii) locally compact. In [2], [3],
[5] it is shown that there exist minimal Hausdorff, minimal Urysohn,
and minimal regular spaces which are not compact, while for proper-
ties (iv) through (vii) mininal-P is equivalent to compactness.

THEOREM. A P-space (X, τ) is minimal-P if and only if {τβ \ τβ

is P; τβ Φ τ} = 0 .ι

Proof. Necessity, in each case, follows from the fact that τβ <^ r
for every open base β.

Sufficiency for property (i) through (iii): Suppose (X, τ) is not
minimal Hausdorff (Urysohn; regular). Then there exists an open
(Urysohn; regular) filter base ^ = {Ua}aeA with uniques adherent point
x0, which does not converge (see [5], [2]). By Lemma 1, there exists
a base β for τ such that τβ :$ τ and τβ is Hausdorff (Urysohn; regular).

Sufficiency for completely regular2: Suppose (X, z) is not compact.
Let (Y,τr) denote a compact extension of (X, τ). Take and fix

pe Y\X. Let .i/^be the filter base of open neighborhoods of p, and
5^* denote the trace of ^ in X. Considered as a filter base in
(Y, τ'), S^7* has a unique adherent point, namely p. Thus Jίf* has
no adherent point in (X, τ). Fix and element x0 in X. Let
β = ^yj/- u Λ? where Λ" = {N\Neτ and x0 e ClτN} and Λ? = {M\ Me τ
and ΛfcX\C£ΓS* for some S*e<i^*}. One can show β is an open
base for τ. Similarly one can show that SΓ = {X/ClτH | H e Λ^ U ^ O
is a base for τβ.

We will now show that τβ Φ τ and (X, τβ) is completely regular.
Let us first note that since (X, τ) is regular and since Λr a β, then
Geτβ whenever Geτ and x0 ί G. Hence if / is continuous on (X, τ)
then / is continuous everywhere on (X, τβ) except possibly at x0. Now
there exists S* e ^ * such that xQ$GlτS*. Since τ is regular, then
there exists Ueτ such that xoe U and ClτUΠ ClτS* = 0 . Since any
element of τβ which contains x0 must meet S*, then Ugτβ. Thus

1 The result for p — Hausdorff was independently obtained by G. Strecker.
2 The technique used by Berri in [2] to show that a space is compact if it is

minimal completely regular is extensively used in this proof.
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τβ Φ τ.
We complete the proof by showing τβ is completely regular. Take

beX and X\ClτHe^T where b$X\ClτH and He^ru^?. We
wish to show there exists a continuous, real-valued function / on
(X, τβ), such that f(b) = 1 and f(x) = 0 for all x e ClτH. Suppose
He^T\ Then xQeClτH Let S * e y * be such that b$ClTS*; Since
(X, τ) is regular, then there exists Veτ such that be V and

ClrVΠ Cl(HU S*) = 0 .

Since (X, τ) is completely regular, then there exists a continuous,
real-valued function / such that f(b) = 1 and f(x) = 0 for all a;Gl\F.
By a previous remark, / is continuous at every point of (X, τβ) except
possibly at x = x0. We will now show /is continuous at x — x0. Now
for all x e X\ V, f(x) = 0. Since Clτ V Π Clτ(H US*)= 0 , then f(x) = 0
for all x e X\Cίr V. Thus / is continuous at all x e X\Clτ V, and hence
at all x eClτ(H U £*). Therefore / is continuous at a?0.

Similarly one can show that if H e ^€, then there exists a real-
valued continuous function / on (X, τβ) such that f(b) = 1 and f(x) = 0
for each x e ClτH.

Sufficiency for properties (v) and (vi): Suppose the normal (com-
pletely normal) space (X, τ) is not compact. Then X is not minimal
regular since a minimal regular normal (completely normal) space is
minimal completely regular. Hence there exists a nonconvergent
regular filter base % with a unique adherent point x0. By Lemma 2,
there exists a base β for τ such that τβ < τ and τβ is normal (com-
pletely normal).

Sufficiency for locally compact: Suppose (X, τ) is not minimal
locally compact (i.e., not compact). Let (Y, τr) denote the Alexandroff
compactification of X with Y — X U {p} where p&X. Fix an element
x0 in X and construct β — Λ'" U ̂ & as in the proof of sufficiency
for completely regular spaces. One can show τβ < r and τβ is locally
compact, and in fact, compact.
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