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Let A, B, C be respectively the class of all finite super-
solvable groups, the class of all finite groups which satisfy
the converse to Lagrange's theorem, and the class of all finite
solvable groups. We show that Aa B aC, and give examples
to show that both of the inclusions are actually proper.

Throughout, 'n', '£', 'α/, 'α 2 ' , , 'α/ will denote positive integers;
ζPiΊ 'Vzi •••> kVt will denote pairwise distinct positive integer primes.
If G and H are finite groups, then, ζG" will denote the commutator
subgroup of G, 'G x if' will denote the external direct product of G
and H, and '\G\' will denote the order of G. Ά4

9 will denote the
alternating group on 4 symbols, V will denote the identity of A4, and
4C2' will denote the cyclic group of order 2.

We are concerned here only with finite groups; throughout, when
we say 'group', we intend this to be read as 'finite group', and 'G'
will always denote a finite group. Our version of the converse to
Lagrange's theorem is as follows:

DEFINITION. G is a CLT group if and only if for each d, the
following holds: if d is a positive integer divisor of | G | , then G has
at least one subgroup H with | H\ = d.

All terminology not used in the above definition will be that of [2].

LEMMA 1. | G | = n = pppp p\% and nt = n/pp for i = 1, 2,
• , ί. Then G is solvable if and only if G has subgroups with orders
nlfn2, •••, nt.

Proof. This follows readily from Theorem 9.3.1, p. 141, and
Theorem 9.3.3, p. 144 of [2].

LEMMA 2. | G | = n = plxpp •••??* wiίA Pί<p2< < p t . Then
if G is super solvable, G has normal subgroups with orders 1, pt, p

2

t,

Proof. This follows readily from Corollary 10.5.2, p. 159 of [2]

THEOREM 1. Every CLT group is solvable.

Proof. This is trivial if \G\ = 1. Let G be a CLT group with
= n = pppp PΪ*, and let ^ = nfp^ for i = 1, 2, , t; since
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each n{ is a divisor of | G | , G must have subgroups with orders nly

n2, '",nt. Applying Lemma 1, we conclude that G is solvable, and
this completes our proof.

The author wishes to thank Professor M. Hall for pointing out
the proof of Theorem 1.

THEOREM 2. Every supersolvable group is CLT.

Proof. This is trivial if | G \ = 1. We shall use induction on the
number of positive integer primes dividing \G\ if | G \ > 1.

If G is any group with \G\ = pΐ1, then Sylow's theorem tells us
that G is CLT; in fact, any finite p r group is supersolvable, but we
do not need this.

Suppose now that every supersolvable group whose order is divi-
sible by exactly t distinct positive integer primes is CLT, and let G
be a supersolvable group with | G \ = pppp pVpV+t1* Vι < Vi <
< pt < Pt+ι* We shall show that G is CLT, and our conclusion will
follow. Let d be a positive integer divisor of | G | ; we wish to show
that G has a subgroup of order d. We may write d = p^pl2

p^p^X1 = r^ί+i1, where ϊ^ is an integer and 0 fg b{ <̂  a{ for each i = 1,
2, , t, t + 1, and r = p\ιpl2 p\ι. Since G is supersolvable, G is
solvable, and we may apply Lemma 1 to conclude that G has a subgroup
H with I if I = nt+1 = p? 1 ^ 2 pΓ Now, if is a subgroup of G, and
G is supersolvable; hence, H is supersolvable and | if | is divisible by
exactly t distinct positive integer primes. By our induction hypothesis,
H is CLT; since r is a divisor of nt+ι and nt+1 = | i ϊ | , it follows that
H must have a subgroup i? with \ R\ — r. Thus, R is a subgroup of
G with I R I = r; since G is supersolvable and pt+ι is the largest prime
dividing | G \, we may apply Lemma 2 to conclude that G has a normal
subgroup P with | P\ = p^i1. Now let RP be the set of all products
xy with x e R and y e P; since P is a normal subgroup of G, ί?P is
a subgroup of G. Also, \R\ and | P | are relatively prime, so that
I RP I = I R I I P I/I R n PI = I # I I P I; hence, i2P is a subgroup of G
with I RP I = I R \ - \ P \ ~ rp\\χγ — d, and this completes our proof.

REMARK. Since every subgroup of a supersolvable group is super-
solvable, it is clear that Theorem 2 can be used to prove the follow-
ing: If G is supersolvable, then every subgroup of G is CLT. Some-
time after the author had obtained Theorem 2, he became aware of
the following (due to Professor W. Deskins): G is supersolvable if and
only if every subgroup of G (including G itself) is CLT. This appears
in [l].

LEMMA 3. Let H be any group with \H\ = h, where h is odd,.
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Then I A± x H\ — 12h, and A4 x H has no subgroups of order 6h.

Proof. Suppose to the contrary that AA x H has a subgroup K
with I if I = 6h; then K has index 2 in A4 x H, so that if is a normal
subgroup of A, x if and | (A4 x JΪ)/iΓ| = 2. Hence, (At x # ) / # is
Abelian, so that (AΛ x H)r = A[ x H' is a subgroup of K; it follows
that I A: I must divide | K\. Now ̂  - {β, (12)(34), (13)(24), (14)(23)}, so
that 4 must divide \K\ = 6h; this is not possible, since h is odd, and
this completes our proof.

LEMMA 4. Let H be any group of odd order) then A4x H is sol-
vable and not CLT.

Proof. According to Thompson and Feit, H is solvable; since A±
is solvable, it follows that A4 x H is solvable. The result of Lemma 3
shows that A4 x H is not CLT, and this completes our proof.

LEMMA 5. Let G be any CLT group; then (A4 x C2) x G is CLT
and not super solvable.

Proof. It is clear that a finite direct product of CLT groups is
itself CLT, and it is clear that A4 x C2 is CLT; it follows that
(A4 x C2) x G is CLT. Now Lemma 3 shows that A4 is not CLT,
and Theorem 2 then shows that A4 is not supersolvable; it follows
that (A4 x C2) x G is not supersolvable, and this completes our proof.

Our results show that the class of CLT groups fits properly be-
tween the class of supersolvable groups and the class of solvable
groups. As a closing remark, we note the following: If G is super-
solvable (solvable) then every subgroup of G and every factor group
of G is supersolvable (solvable); that this is not true for CLT groups
in general is shown by the following example. Let M be any CLT
group; then (A4 x C2) x M is CLT, but (A4 x C2) x M has A4 as both
a subgroup and a factor group, and A4 is not CLT.
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