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This paper is concerned with locally convex spaces which
are closed, separable subspaces of their strong biduals. Let E
be a space of this type. We first prove that, for an element
of Etr

9 weak* continuity on Er is equivalent to sequential weak*
continuity on the convex, strongly bounded subsets of E'. We
then prove Eberlein's theorem for spaces of this type; i.e., we
prove that, for the weakly closed subsets of E, countable weak
compactness coincides with weak compactness. Finally, we
show that the separability hypothesis in our first theorem is
necessary.

Our notation and terminology will be that of [1]. The letter E
will always denote a locally convex, topological vector space over the
field of real numbers. If we want to call attention to a specific, locally
convex topology t on E9 we will write E[t\. The dual of E will be
denoted by E'. The weakest topology on E which renders each element
of Er continuous will be denoted by σ(E, Ef). We shall be working
with the strong topology, β(E', E), on Er. This is the topology of
uniform convergence on the convex, σ(E, £")-bounded subsets of E.
E" will denote the dual of E'[β(E', E)]. We shall often identify E
with its canonical image in E". The topology induced on E by its
strong bidual, E"[β{E", E% will be denoted by β*(E, E'). Recall
that β*(E, E') is the topology of uniform convergence on the convex,
β(E', #)-bounded subsets of E'.

DEFINITION. We shall say that E has property (S) if the following
is true: An element w of E" is in E if and only if lim wfn = 0,
whenever {/J is a β(E', unbounded sequence of points of E' which
is σ(E', JE')-convergent to zero.

THEOREM 1. Suppose that E[β*(E, E')] is separable. Then Ehas
property (S) if and only if E is a closed, linear subspace of
E"[β(E", E')\.

Proof. We shall prove sufficiency first. Let w be in E" and
suppose that lim wfn — 0, whenever {fn} is a β(E', unbounded sequence
of points of Ef which is σ(E', i£)-eonvergent to zero. Let B be a
convex, β(E', unbounded subset of Ef and let F be the dual of
E[β*(E, E')]. Clearly E'cF and, by [1; Prop. 2, p. 65], B is relatively
σ(F, j&J-compact. Since E is β*(E, £")-separable, the restriction of
σ{F9 E) to B is metrizable. Hence σ(E', E) is metrizable on every
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convex, β(Ef .E^-bounded subset of E'. This fact, together with our
assumptions on w, implies that w is σ(E', 2?)-continuous on every convex,
β(E', J5r)-bounded subset of Ef. Thus, by [4; Th. 10, p. 97], w is in
the completion of E[β*(E, J5")] But w is in i?" and E is closed in
E"[β{E", E')}. It follows that w is in E.

Now assume that E has property (S). Let w be a point in the
closure of E for E'[β(E", E% and let {/„} be a β(E', #)-bounded
sequence of points of Ef which is σ(E', ϋ^-convergent to zero. We
may, for each fixed positive integer k, choose xk in E such that: (a)
I wfn — %kfn I ̂  1/fe f° r every n. The inequality

I wfn ~ wfm \^\wfn - xkfn I + I xkfn - xkfm I + I xkfm - wfm I

shows that lim wfn exists. But by (a), this limit is ^ 1/k for every k.
Thus, E is closed in E"[β(E", E')\.

THEOREM 2. // E has property (S), then every weakly closed,
countably weakly compact subset of E is weakly compact.

Proof. Let M be a weakly closed, countably weakly compact subset
of E. Let w be a point in the closure of M for E"\σ(Έ", £")] and
let {fn} be a sequence of points of E' which is β(E\ 2?)-bounded and
o{E', l£)-convergent to zero. For each positive integer k we may choose
xk in M such that: | xkfn — wfn \ <; 1/k for n <^ k. Thus, for each fixed
n, lim a?A/Λ = wfn. Since M is countably weakly compact {xk} has a
weak adherent point xQ in M. It follows that tt?/Λ = xofn for every w.
But then lim wfn = 0 and, since E has property (S), w is in E and
hence in ikί.

Let B be a Banach space and let Q be a linear subspace of i?'.
Following Dixmier [2], we shall say that Q has positive characteristic
if {x in Q I || x \\ ^ 1} is weak* dense in some ball of B'. If Q has
positive characteristic and is also norm closed in B', then it is easily
seen that β*(B, Q) is equivalent to the norm topology of B. Thus, if
B is separable, then Theorem 2 shows that compactness and countable
compactness coincide for the closed subsets of B[σ(B, Q)]. This result
was first obtained by I. Singer [6] who also showed that it is no longer
true if B is nonseparable; see [7]. Hence, in Theorem 1, the separa-
bility of E[β*(E, E')} is necessary. .

In the preceding application we made use of the following:

THEOREM 3. If E[β*(E, £")] is both complete and separable, then
E has property (S).

Y. Komura [5] has shown that the strong bidual of a locally convex
space need not be complete. Thus Theorem 3 is weaker than Theorem 1.
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