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It is known that a C°° orientable totally umbilical hyper-
surface P with nonzero mean curvature of a Eaehler manifold
M is a normal contact manifold. Moreover, if M = Cn with
the flat Kaehler metric, P can be realized as a normal contact
metric manifold of positive constant curvature. It is the main
purpose of this paper to obtain corresponding results for co-
symplectic manifolds.

The direct product of two normal almost contact manifolds
can be endowed with a complex structure. For cosymplectic
manifolds more is obtained. Indeed, the direct product of two
cosymplectic manifolds can be given a Kaehlerian structure.
This is particularly true of orientable totally geodesic hyper-
surfaces of a Kaehler manifold.

Our notion of a cosymplectic manifold differs from the one given
by P. Libermann in [3] and was given by D. Blair [1],

THEOREM 1. A necessary and sufficient condition that a C00

orientable hypersurface P of a Kaehler manifold M be cosymplectic
with almost contact form Ύ] is that its second fundamental form H be
proportional to η(g)7], that is

H = hη <g) Ύ] ,

where h = H(ζ, ζ), the vector field ξ being the contravariant form of
Ύ] with respect to the almost contact metric.

COROLLARY 1. AC00 orientable totally geodesic hyper surface of
a Kaehler manifold is a cosymplectic manifold.

A corresponding result was obtained by Y. Tashiro [6] for totally
umbilical hyper surf aces.

For complete simply connected cosymplectic manifolds an applica-
tion of the de Rham decomposition theorem (see [2]) yields

COROLLARY 2. AC00 complete simply connected orientable totally
geodesic hypersurface of a Kaehler manifold is a product with one
factor Kaehlerian.

THEOREM 2. A cosymplectic hypersurface of Cn with the flat
Kaehler metric is locally flat.

275
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For the corresponding statement concerning normal contact hyper-
surfaces the reader is referred to [6].

A. Morimoto [4] has shown that the direct product of two normal
almost contact manifolds can be given a complex structure. For co-
symplectic manifolds we obtain more.

THEOREM 3. The direct product of two cosymplectic manifolds
can be given a Kaehlerian structure.

Applying Corollary 1 we obtain

COROLLARY 3. The direct product of two C°° orientable totally
geodesic hypersurfaces of a Kaehler manifold is a Kaehler manifold.

2. Almost contact manifolds* An almost contact structure
(Φ, ξ,V) o n a (%n + l)-dimensional C°° manifold P is given by a tensor
field φ of type (1,1), a vector field ζ and a 1-form η on P called the
contact form such that

(2.1) η{ζ) = 1 ,

(2.2) φ(ξ) = 0 , η o φ = 0 ,

(2.3) φ * = - I + η ( . ) ξ f

where I is the identity transformation field. If P has a (φ, ξ, Ύ])-
structure then we can find a Riemann metric ( , ) such that

(2.4) * = ( ί °

so that φ is skew-symmetric with respect to ( , ). P is then said to
have a (ψ, ξ,7j,( , ))-structure.

The almost contact structure is called normal if for any vector
fields I J o n P

(2.5) [X, Y] + φ[φX9 Y] + φ[X, φY]- [φX, φY] = dV(X, Y)ξ .

A (2n + l)-dimensional C°° manifold is said to have a contact
structure, and is then called a contact manifold, if it carries a global
1-form 7] such that

η A {dη)n Φ 0 .

It can be shown that there exists a (φ, ξ, η, ( , ))-structure on a con-
tact manifold P such that



TOTALLY GEODESIC HYPERSURFACES OF KAEHLER MANIFOLDS 277

dη = (φX, Y) .

P is then called a contact metric manifold.
An almost contact metric structure (φ, ξ9η,( , )) is called quasi-

Sasakian if it is normal and its fundamental form Φ, where Φ{X, Y) —
(φX, Y), is closed. The quasi-Sasakian manifolds may be classified
according to the rank of ΎJ. The 1-form rj has rank 2p if (dη)p Φ 0
and Ύ] A {dη)p = 0, and has rank 2p + 1 if η A (drjY Φ 0 and {dηy+1 = 0.
There are no quasi-Sasakian structures of even rank [1], If the rank
is maximal, the almost contact manifold is a Sasakian manifold, and
if the rank is 1, it is a cosymplectic manifold.

3* Almost contact hypersurfaces* Let M be an almost her-
mitian manifold of real dimension 2n with almost complex structure
tensor J. Then, in terms of the hermitian metric < , ) of Jlί

<3.1) <Jx, Jy> = <x, y>

for every pair of tangent vectors x,ye Mm—the tangent space at
meM. If P is a smooth orientable hypersurface imbedded in M with
imbedding i:P—>M, the induced metric on P is defined in terms of
the metric on M by

(3.2) (x, y) = <i*α, i*y}

for each pair of tangent vectors x,ye Pm.
A Riemannian connexion D on a Riemannian manifold with

metric < , )> is characterized by the properties:

.(a) DXY - DYX = [X, Y] and

Let Nm be the unit normal of P at m with orientation determined
by that of P. Let V be the Riemannian connexion on M. The
Weingarten map W: Pm —• P m is given by

{3.3) TΓ(α) - V,iVw , xePm.

(We write a; for i*x in the sequel, with no resulting confusion,
in order to simplify our notation.) The second fundamental form
H: Pm x Pm —• R of P is the symmetric bilinear form

(3.4)

If D is the induced Riemannian connexion on P, then

<3.5) Z),Γ = V . Γ + ff(«, »)ΛΓm ,

where £GP m and^F is a vector field on P extending #. Set
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(3.6) η(x) = (Jx, JV> , xePm

and

(3.7) Φ(x, y) = (Jx, y> , x,yePm .

Formula (3.1) says that Φ is skew-symmetric with respect to <( , X
If £ = (η, ) is the contra variant form of η with respect to ( , ), then.
ξ is a vector field on P with the property

(3.8) Jζ = N .

Thus,

= Φ(£, X)

, X> by (3.7)
( 8 ' 9 ) = <N, X} by (3.8)

= 0 ,

where XeE(P), the module of vector fields on P.

Now, in terms of Φ and ( , ) an endomorphism φ of E(P) is de-
fined by the equation

(3.10) (φX, Y) = Φ(X, Y) , X, YeE(P) .

Since Φ is skew-symmetric

(3.11) (φX,Y)=-(X,φY).

Moreover,

φX = JX - 7){X)N , X e E(P) .

It follows that

(3.13) (φX, φY) = (X, Y) - V(X)V(Y) .

For, by (3.10), (3.7), (3.12) and (3.6), (φX, φY) = Φ(X, φY) = (JX, ψYy =

(jx, JY - η(Y)Ny = (jx, jYy - η{Y)(jχ, Ny = (x, Yy -
In addition, since (φ*X, Y) = -(φX, φY) = η{X)η{Y) - (X, Y)

(3.14) φ*X= -X+7]{X)ζ .

Applying (3.9) and (3.10), we obtain

(3.15) φξ = O.

Thus, from (3.11) and (3.13)

(3.16) η o φ = 0 .
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We conclude t h a t , P has a (φ, ξ,η,( , ))-structure.

PROPOSITION 1. A C°° orίentάble hypersurface P of an almost
hermitian manifold Mhas a naturally induced almost contact structure.

If the fundamental 2-form Ω of M where Ω(X, Y) = </X, Γ> is
closed (that is, if M is an almost Kaehler manifold) then Φ is closed.
Indeed, Φ — i*Ω directly from the definitions of Φ and Ω.

We compute DXΦ:

(DXΦ)(Y, Z) = XΦ(Y, Z) - Φ(DXY, Z) - Φ(Y, DXZ)

= X(φY, Z) + {φZ, DXY) - (φY, DXZ)

= X(φY, Z) + <φZ,

= XQY, zy + <JZ

- <J](Z)N, VXY> + <V(Y)N,

= (V*Ω)(Y, Z) - v(Z)<N, VχΓ>

= (VXΩ)(Y, Z) + η(Z)H(X, Y) - η(Y)H{X, Z)

for all X, Y,ZeE(P).

If M is Kaehlerian, X/XΩ — 0, so

(3.17) (DXΦ)(Y, Z) = η{Z)H{X, Y) - η{Y)H{X, Z) .

Moreover,

(3.18) (

For,

Vxί> by (3.5)

= <JF, JVχί> by (3.1)

= <JF, \7xJξy since \7XΩ vanishes

= <JΓ, V*ΛΓ> by (3.8)

= (φY, WX) by (3.3)

= {WφY, X) since W is self-ad joint

= H(X,φY) by (3.4).

4. Proof of Theorem 1. If H = hη 0 η, then by (3.17), DXΦ = 0,
and by (3.18), (Dxη){Y) = ^(X)77(^Γ) = 0 since P is almost contact.
Since φ has vanishing covariant derivative it is easily seen that P is
normal. Indeed, it is easily checked that (2.5) is satisfied for a basis
of coordinate vector fields compatible with φ. Hence, P is cosymplectic.
Observe that h = H(ξ, ξ).

Conversely, if the almost contact structure on P is cosymplectic,
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Dη vanishes (see [1]). Consequently, by (3.18), H{X, φY) = 0, Xr

YeE(P). Hence, H(X, φΎ) = 0 implies H(X9 Y) = η{Y)H(X9 ζ). But
H(X, ζ) = η(X)H{ξ, ξ), so

REMARKS, (a) A simply connected totally geodesic orientable hyper-
surface of a Kaehler manifold cannot be compact, since otherwise its
first betti number is not zero by virtue of the fact that η is harmonic.

(b) Observe that the vector field ξ of Theorem 1 is a characteristic
vector of H.

PROPOSITION 2. A sufficient condition that a C°° orientable hyper-
surface P of a Kaehler manifold M be a contact metric manifold is that

H = λ ( , ) + μη®η , λ ^ O

where ( , ) is the almost contact metric and Ύ) the almost contact
form of P.

Proof. If H = λ( , ) + μη (g> η9 then by (3.18),

2dη(X9 Y) = (Dγη)(X) - (Dxη){Y) = H(Y, φX) - H(X, φY)

- λ[(Γ, φX) - (X, φY)] = 2λΦ(X, Y) .

Since M is a Kaehler manifold Φ is closed. Thus, λ is a constant
and Φ = dη' where Xηr = η.

Observe that λ + μ = H(ξ, ζ).
Theorem 2 is an immediate consequence of the well-known formula

KS(X, Y) = KR(X, Y) - [H(X, X)H(Y, Y) - (H(X, Y)f]

where X, YePm is an orthonormal pair. For, Ks = 0 and H(X, Y) =
hη(X)η{Y).

Proof of Theorem 3. Let P1 and P2 be almost contact manifolds
with almost contact structures (φiy ξif ^ ) , i = 1, 2, respectively. Then,
an almost complex structure J is induced on the product manifold
Px x P2 (see [4]). In fact, for ^ e P ^ , i = 1, 2 we set

(4.1) J ( m i , m2)(x19 x2) - (Φfa - rj2(x2)ξl9 φ2x2 + 7}1(x1)ζ2) .

Now, for ί — 1, 2, let Pi be given a cosympletic structure with under-
lying almost contact structure (φi9 ξiy η^. Since these structures on PL

and P2 are normal the almost complex structure J defined by (4.1) on
the product manifold M = P1 x P2 comes from a complex structure.
Define a metric # on Λf by g, + ^2 where g^i = 1, 2) is the almost
contact metric of P ί β Defining a 2-form Ω on M by
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Ω = Φ, + Φ2 + η, A % ,

we see that Ω has maximal rank since Φ{ has this property on Pif

i = 1, 2. Moreover, since Φu Φ2, η1 and η% are closed, so is Ω. It is
not difficult to check that

g(X, Y) = Ω(X, JY) ,

so Ω is the Kaehler form of the Kaehler manifold (M, J, g).
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