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It is known that a C~ orientable totally umbilical hyper-
surface P with nonzero mean curvature of a Kaehler manifold
M is a normal contact manifold. Moreover, if M = C, with
the flat Kaehler metric, P can be realized as a normal contact
metric manifold of positive constant curvature, It is the main
purpose of this paper to obtain corresponding results for co-
symplectic manifolds.

The direct product of two normal almoest contact manifolds
can be endowed with a complex structure, For cosymplectic
manifolds more is obtained. Indeed, the direct product of two
cosymplectic manifolds can be given a Kaehlerian structure,
This is particularly true of orientable totally geodesic hyper-
surfaces of a Kaehler manifold,

Our notion of a cosymplectic manifold differs from the one given
by P. Libermann in [3] and was given by D. Blair [1].

THEOREM 1. A mnecessary and sufficient condition that a C*
orientable hypersurface P of a Kaehler manifold M be cosymplectic
with almost contact form 1 s that its second fundamental form H be
proportional to 7@ 1, that is

H=mQn,

where h = H(&, &), the vector field & being the contravariant form of
n with respect to the almost contact metric.

COROLLARY 1. A C= orientable totally geodesic hypersurface of
a Kaehler manifold is a cosymplectic manifold.

A corresponding result was obtained by Y. Tashiro [6] for totally
umbilical hypersurfaces.

For complete simply connected cosymplectic manifolds an applica-
tion of the de Rham decomposition theorem (see [2]) yields

COROLLARY 2. A C= complete simply connected orientable totally
geodesic hypersurface of a Kaehler manifold is a product with one
factor Kaehlerian.

THEOREM 2. A cosymplectic hypersurface of C, with the flat
Kaehler metric is locally flat.
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For the corresponding statement concerning normal contact hyper-
surfaces the reader is referred to [6].

A. Morimoto [4] has shown that the direct product of two normal
almost contact manifolds can be given a complex structure. For co-
symplectic manifolds we obtain more.

THEOREM 3. The direct product of two cosymplectic manifolds
can be given a Kaehlerian structure.

Applying Corollary 1 we obtain

COROLLARY 3. The direct product of two C= orientable totally
geodesic hypersurfaces of a Kaehler manifold is a Kaehler manifold.

2. Almost contact manifolds. An almost contact structure
(¢, &,m) on a (2n + 1)-dimensional C* manifold P is given by a tensor
field ¢ of type (1, 1), a vector field £ and a 1-form 7 on P called the
contact form such that

2.1) 7 =1,
(2°2) ¢(E):Oy 7]°¢207
(2.8) ¢*=—I+m(-)&,

where I is the identity transformation field. If P has a (¢, &, n)-
structure then we can find a Riemann metric ( , ) such that

7]:(57')1

(2.4)

so that ¢ is skew-symmetric with respect to ( , ). P is then said to
have a (g, &, », ( , ))-structure.

The almost contact structure is called normal if for any vector
fields X, Y on P

A (2n + 1)-dimensional C= manifold is said to have a contact
structure, and is then called a contact manifold, if it carries a global
1-form 7 such that

NA@)*+0.

It can be shown that there exists a (¢, &, 7, ( , ))-structure on a con-
tact manifold P such that
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dn = (sX, Y) .

P is then called a contact metric manifold.

An almost contact metric structure (4, &, », (, )) is called quasi-
Sasakian if it is normal and its fundamental form @, where ¢(X, Y) =
(¢X,Y), is closed. The quasi-Sasakian manifolds may be classified
according to the rank of 7. The 1-form » has rank 2p if (d7)* + 0
and 7 A (dp)” = 0, and has rank 2p + 1 if » A (d7)” # 0 and (dn)*+' = 0.
There are no quasi-Sasakian structures of even rank [1]. If the rank
is maximal, the almost contact manifold is a Sasakian manifold, and
if the rank is 1, it is a cosymplectic manifold.

3. Almost contact hypersurfaces. Let M be an almost her-
mitian manifold of real dimension 2% with almost complex structure
tensor J. Then, in terms of the hermitian metric < , > of M

(3.1) Jw, Jyy = <z, ¥

for every pair of tangent vectors x,y e M,—the tangent space at
me M. If Pisasmooth orientable hypersurface imbedded in M with
imbedding ¢: P— M, the induced metric on P is defined in terms of
the metric on M by

for each pair of tangent vectors z,y € P,,.
A Riemannian conmexion D on a Riemannian manifold with
metric { , > is characterized by the properties:

(@) D,Y — D,X = [X, Y] and
‘(b) Z<X’ Y> = <DZ-Xy Y> + <X’ DZY> .

Let N, be the unit normal of P at m with orientation determined
by that of P. Let ¥V be the Riemannian connexion on M. The
Weingarten map W: P, — P, is given by

(3.3) W) = V.N, , xeP, .

(We write 2 for 7,2 in the sequel, with no resulting confusion,
in order to simplify our notation.) The second fundamental form
H: P, x P,— R of P is the symmetric bilinear form

(3'4) H(.’B, y) = (Wx’ y) .
If D is the induced Riemannian connexion on P, then

where xe P, and;Y is a vector field on P extending y. Set
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(3.6) n@) =<{Js, Ny, =xecP,
and
3.7 o, y) =<Jx,y>, @xyeP,.

Formula (3.1) says that @ is skew-symmetric with respect to { , >.
If & = (n, ) is the contravariant form of » with respect to ( , ), then
& is a vector field on P with the property

(3.8) JE=N.
Thus,
(¢(9)D)X) = 0(¢, X)
= {J&, X> by (3.7)

= <N, X) by (3.8)
=0 ,

(3.9

where X ¢ E(P), the module of vector fields on P,

Now, in terms of @ and ( , ) an endomorphism ¢ of E(P) is de-
fined by the equation

(3.10) X, Y)=0(X,Y), X, YeEP).
Since @ is skew-symmetric
(3.11) X, Y)=—(X,¢Y).
Moreover,

¢X = JX — n(X)N , XeEP).
It follows that
(3.13) (6X,0Y) = (X, Y) — p(X)(Y) .

For, by (3.10), (3.7), (3.12) and (3.6), (6X, ¢Y) = &(X, ¢Y) = <JX, Y> =
JX,JY = Y)N)> =X, JY ) - Y )JIX, N> =<X, Y — (Y MX).
In addition, since (8°X, ¥) = —(3X, 6Y) = n(X)(Y) — (X, ¥)

(3.14) #X = —X + pX)¢ .
Applying (3.9) and (3.10), we obtain

(3.15) ¢s =0,

Thus, from (3.11) and (3.13)

(3.16) nog=0.
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We conclude that, P has a (¢, &, 7, ( , ))-structure.

ProposITION 1. A C= orientable hypersurface P of an almost
hermitian manifold M has a naturally induced almost contact structure.

If the fundamental 2-form 2 of M where X, Y)=<{JX,Y) is
closed (that is, if M is an almost Kaehler manifold) then @ is closed.
Indeed, @ = +*2 directly from the definitions of @ and Q.

We compute D,®?:

(DxONY, Z) = XO(Y, Z) — O(D+Y, Z) — O(Y, D+ Z)
= X(9Y, Z) + (92, DxY) — ($Y, D Z)
= X(0Y, Z) + <92, VxY) = <8Y, VxZ)
= XY, Zy +<{JZ, Yy —<JY,VxZ)
— 2N, VY + NY)N, ViZ)
= (Va)Y, Z) = 9(Z)<N, V=Y + YY)XN,VxZ)
= (VeUY, Z) + 9(Z2)H(X, Y) — 9(Y)H(X, Z)

for all X, Y, Z<c E(P).
If M is Kaehlerian, V2 = 0, so

(3.17) (DxONY, Z) = n(Z)H(X, Y) — n(Y)H(X, Z) .
Moreover,

(3.18) (Dxi(Y) = H(X, ¢Y) .

For,

DY) = (Y, Dx§)

=Y, Vx&> by (3.5)

=<JY, IV & by (3.1)

=<JY, VyJ&) since V2 vanishes
=<{JY, VN> by (3.8)

= (Y, WX) by (3.3)

= (Wg¢Y, X) since W is self-adjoint
= H(X, 6Y) by (3.4).

4. Proof of Theorem 1. If H = hyQ 7, then by (3.17), D,® =0,
and by (3.18), (Ds9)(Y) = p(X)n(6¢Y) = 0 since P is almost contact.
Since ¢ has vanishing covariant derivative it is easily seen that P is
normal. Indeed, it is easily checked that (2.5) is satisfied for a basis
of coordinate vector fields compatible with ¢. Hence, P is cosymplectic.
Observe that h = H(¢, &).

Conversely, if the almost contact structure on P is cosymplectic,
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Dy vanishes (see [1]). Consequently, by (3.18), H(X, ¢Y) =0, X,
Y e E(P). Hence, H(X, $°Y) = 0 implies H(X, Y) = n(Y)H(X, &). But
H(X, §) = n(X)H(, §), so

H(X, Y) = H(, HnX)n(Y) .

REMARKS. (a) A simply connected totally geodesic orientable hyper-
surface of a Kaehler manifold cannot be compact, since otherwise its
first betti number is not zero by virtue of the fact that » is harmonie.

(b) Observe that the vector field & of Theorem 1 is a characteristic

vector of H.

PROPOSITION 2. A sufficient condition that a C* orientable hyper-
surface P of a Kaehler manifold M be a contact metric manifold is that

H=X,)+m7, r»+#0

where ( , ) is the almost contact metric and 7 the almost contact
form of P.

Proof. If H=X(, )+ #nQ 7, then by (3.18),

2dn(X, Y) = (Dy)(X) — (Dxy)(Y) = H(Y, $X) — H(X, $Y)
= MY, 9X) — (X, 9Y)] = 200(X, Y) .

Since M is a Kaehler manifold @ is closed. Thus, » is a constant
and @ = dn’ where Ay’ = 7.

Observe that N + ¢ = H(§, &).

Theorem 2 is an immediate consequence of the well-known formula

KX, Y) = Ki(X, Y) — [HX, X)H(Y, Y) — (H(X, Y))]

where X, Y e P, is an orthonormal pair. For, K, =0 and H(X, Y) =
hp(X)n(Y).

Proof of Theorem 3. Let P, and P, be almost contact manifolds
with almost contact structures (¢;, &;, ), © = 1, 2, respectively. Then,
an almost complex structure J is induced on the product manifold
P, x P, (see [4]). In fact, for x;e P;,,, © = 1,2 we set

(4.1) J(ml, mz)(xly Ty) = (.2 — Nu(@2)E1, Gy + N(X)E0) ©

Now, for 7 = 1,2, let P; be given a cosympletic structure with under-
lying almost contact structure (¢;, &;, ;). Since these structures on P,
and P, are normal the almost complex structure J defined by (4.1) on
the product manifold M = P, x P, comes from a complex structure.
Define a metric ¢ on M by g, + g, where g,(« = 1, 2) is the almost
contact metric of P;. Defining a 2-form Q2 on M by
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92@1“’@2‘}"771/\7]2,

we see that 2 has maximal rank since @; has this property on P,
2 =1,2. Moreover, since @,, ?,, 7, and 7, are closed, so is 2. It is
not difficult to check that

9(X, Y) =X, JY),
so £ is the Kaehler form of the Kaehler manifold (M, J, g).
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