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Let # and k& be two Hilbert spaces, » Q k will denote the
tensor product of % and k., Let . be a von Neumann al-
gebra acting on 2, Let v be an ampliation of . in L Rk,
ie., ¥ is a map of . into bounded linear operators of 7 &
kand ¥() = ¥ QI (I, is the identity map on k). Let %7
be the image of .&7 by 7.

The purpose of this paper is to prove the following result:
If 27 is a subalgebra of . and if <% is the range of a
normal expectation ¢ defined on .97, then there exists an
ampliation of . in h ® k, independent of <% and of ¢, such
that ¢ & I, is a spatial isomorphism of 57

Let .o~ and <% be two C* algebras with identity. Suppose
& < 7. Let ¢ be a positive linear map of .o on <# such that ¢
preserves the identity and such that ¢(BX) = Bp(X) for all B in <&
and all X in .2/ ¢ is then defined to be an expectation of .o on 7.
The extension of the notion of an expectation in the probability the-
ory sense, to expectations on finite von Neumann algebra is largely
due to J. Dixmier and H. Umegaki [1]. In [4] Tomiyama considers
an expectation on von Neumann algebras to be a projection of norm
one. If @ is an expectation in the sense ¢p(BX) = Bp(X), @ positive
and ¢ preserves identities, then ¢(XB) = o(X)B for all X in ./, B
in &Z <& is the set of fixed points of ¢. By writing o[(X — o(X))*
(X — ()] 2 0 we have p(X*X) = o(X)*¢(X). In particular ¢ is a
bounded map. The result stated in the previous paragraph extends
a result by Nakamura, Takesaki, and Umegaki [2], who consider the
case when .97 is a finite von Neumann algebra.

2. Preliminaries. Basic definitions and some essentially known
results will now be given for ready reference. Let M and N be C*
algebras and ¢ a positive linear map of M on N. Let M, be the set
of all n X » matrices whose entries are elements of M, call those
entries A;,;. Define for each n, p™(4;,,) = (p(4;,;)); " is then a map
of M, on N,. ¢ is called completely positive if each o" is.

Let .o and <& be two von Neumann algebras, with <% c 7.
Let ¢ be an expectation of .o on <#. o is called fatthful if for
any T in &7, o(TT*) =0 implies T = 0. Let A, be a net of uniform-
ly bounded self adjoint operators in .o ¢ is called normal if

sup P(A,) = @(SBD A .
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The ultra-weak topology on a will be the weakest which will make
all Sw,. ,(A) = 3(Ax;,y;) continuous where

Sllalf<eo and X[yl < oo

In what follows if N is arbitrary von Neumann algebra, N’ will de-
note the commutant of N. If % is any Hilbert space, dim & will
denote the cardinality of the dimension of A.

LEMMA 1. Let M and N be two von Neumann algebras acting
on hy and hy. Let ¢ be a* isomorphism of M on N. Let k be a
Hilbert space such that dim k = Max (y,, dim &, dim ky), then ¢ & I,
1s a spatial isomorphism. This theorem says that there exists an
wsometry V of hy @k on hy Q k such that

PRLARIL)=pA)R I, = VAR L)V*(= VAV*) .

Tomiyama has shown this result in [5].

LEMMA 2. Let M and N be two C* algebras with identities.
Let @ be an expectation of M on N, then ¢ ts completely positive.
This result was shown by Nakamura, Takesaki, and Umegaki in [2].

One of the tools for the proof of the theorem will be the Stine-
spring construction which is given in [3] and which will be sketched
here for completeness sake,

Let M be any von Neumann algebra acting on h. Let M(Oh de-
note the tensor product of M and % as linear spaces. Let N be von
Neumann algebra of M which is the range of a normal expectation
@. On MQ®Hh define an inner product by:

ia®@m Bb QU = 5 (@05 a)a, v)

where a;, b; are in M, z;, y; are in h and where (,) denotes the inner
product in . Now:

S, (@faw,e;) = (3 am, 3 a0) 20,
) =1 =1
Let A be in M, with A;; = a}a; then if z = (2, 2,, -+, ,)
(Az, x) = 3] (@faw,w;) = 0 .
)

By Proposition 2,

% (plafa;)r;, x;) = 0.
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Hence the inner product defined on M (& & is bilinear and positive.
However, it is possible to have {{,{> =0 with { 0. Divide out
the space M O h by all vectors of norm zero. Then taking the com-
pletion of that space, one obtains a Hilbert space which will be de-
noted M & h.

LEMMA 3. & is embedded as a Hilbert space in M & h.

Proof. In fact we shall show that % is isomorphic to N A.
Let a;2=1,2, ---, n be operators in N, consider the map

S( im@%,) = iaixf

then

2

(Fa®w, Sa®e

= Z (plafa)x;, ©;)
= Z (afa;x;, x;)

n
aQix; , 2 a;x;) .

1=1

e £

i

(

-
If
-~

Hence S is an isometry of N® k on k. In particular then, one can
view h as a subspace of MK h.

LEMMA 4. o defines a self adjoint projection E of M@ h on
N h.

Proof. Let a;,,7=1,2,.--,n be operators of M. Define

E( 0@ = 3 9@) @

the proof in [2] shows that E is a well-defined self adjoint projection
of M®h on NQ h. Recall for example how self adjointness is check-
ed out.

B(S @), 5bQu)
= (S p@) @@, b, Qv = B (pbip@)w, u;
= 3, (ple®7az, v)
= (S @@, S ob) Qv
= (S u@uB(SbhQu).
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LEMMA 5. There exists an ultra-weakly continuous representa-
tion 1 of M in LM QR h) such that WD)E = EIb) for all b in N.
Moreover if h and N @ h are identified by the isometry S of Lemma
3, then p(A) = El(a)E for all a in M.

Proof. For each a in M define
o) Xa;@x) = S aa;Qw;

l is then a representation of M in LIMQ k). Let b, 1 =1,2,--+,n
be operators in N then:

Ela)(Eb; Qx;) = E(X ab; Q@ x;)
=2 pa)b; ¥ ®; = p(a)Xb; ® ;)

identifying > b; ® x; with > b;x; this shows that El(a)E = ¢(a).
Let b be in N then

UDYE (X a; @ ) = UDNZ. pla:) & ;)
= > bp(a) @ x; = EUbB)X a; Q ;) .

So U(b)E = El(b) for all b in N. To show now that [ is u. w. con-
tinuous, let
n ny,

o= a? @u®, n = 20" @y
=1

with VI[P < oo and 3, || 7]/ < co. Let a, be a net converging
u. w. to ¢ in M. Then it is sufficient to show that A tends to zero
where

A= kzh, a — a)le, Niy -

we have
A =33 (@04 @ — a)ai)ed, y) |

kyh i,
Now b¥*(a — a,)a!® tends to zero u.w. As ¢ is normal, A tends to
zero. Let N C M be two von Neumann algebras acting on %. Let ¢
be a faithful, normal expectation of M on N,

3. Main results. First the following result will be established.

ProprosITION 6. There exists a Hilbert space k& such that:

(1) & can be embedded in k.

(2) There exists an u.w. continuous representation [ of M in
L(k) such that p(A4) = p,,(A)p, where p, is the projection of k¥ on h.

(3) 1 is a* isomorphism.
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(4) 7, commutes with all I(b) with b in N.

Proof. Let k= Mh, if l(a) = 0 then l(a*a) = 0 so ¢p(a*a) = 0.

By faithfulness of @, this implies @ = 0. Hence [ is a * isomor-
phism of M in L(k). The rest of Proposition 6 is a restatement of
Lemma 5., The main result of this paper can now be given,

THEOREM 7. There exists an ampliation of M in h @k such
that 1f N s any von Neumann subalgebra of M which is the range
of a mormal expectation ¢, thenm there exists an isomelry V in
(N ® L) such that p Q I(A) = VAV*, VV* = I, on putting V*V=P,
then P is in (NQL), ¢  I,(A)P = PAP. If ¢ is faithful then

AP =0 (A=0) implies 4 = 0.

Proof. Let s be a Hilbert space with cardinality greater or equal
to the maximum of «, and cardinality of a Hammel basis of M & k.
Define I(A) = UA R L, P = p R I,. Then H(A) = (P, ® L)[(A)P, R L,).
By Lemma 1, ! is spatial. There exists an isometry U of k& s onto
k® s such that $§(A) = U(A)U*. Hence

H(A) = Pog,U(A R I)U*Pyg,

where P,o, denotes the projection of ks on 2~ R s. Moreover P,g,
commutes with all UBU* as B ranges over N (Proposition 6). So
UP,s U commutes with all B for B in N.

Let V = Py, U, then VV™ = Pbg, (=1Iigs)- ~Deﬁne V*V=P=
U*P,g.U. Then P is in (N®IL). So (A) = VAV* for all A in M.
Claim: V is in (N® I). Let B be in N, B = @B) = VBV* so V*B
= PBV* = BPV* = (B)V* so V is in N'. Now

PAP = V*VAV*V
= V*p(A)V
= V*V@(4) = Pp(4) = G(A)P (as P(A)e N L) .
Now let AP = O(A = 0) then AV*V =0 so VAV*V =0 = HA)V so

P(A)Poe,U = 0 and H(A)Pyg, = 0 50 (p(4) @ L)@@ u) = 0 for all
in b and % in s implies p(4) = 0 so A = 0, by faithfulness of .
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