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For a ring R with identity 1, a preprime is a nonempty
subset T of R which is closed under the two binary operations,
addition and multiplication, of E and with —1 ¢ 7. A prime
of R is a preprime of R which is maximal with respect to set
inclusion., A field K is locally finite if every member of K is a
member of some finite subfield of X, For a finite dimensional
vector space V over K let & = Homy (V, V) denote the full ring
of linear transformations of V over K. Let W and L be sub-
spaces of V with WcLcV aud W=+ L., Let T(L, W)=
{ac@/a-Lc W}, Then T(L, W) is a preprime of &, Let

7 ={T(L, W)/W, L are subspaces of V, Wc L, W = L}

We will show that the primes of & are exactly those preprimes
T(L,W)e 9~ with dimg L =1 + dimz W,

There is also an associative monoid with zero element reminiscent
of a value group for a valuation of a field. One actually finds that
this monoid is independent of which prime is used to define it. How-
ever, this shows rather that while this concept yields an abelian group
when the ring is commutative, it may not be the proper concept in
noncommutative rings, see [1, Prop. 2.2].

A number field is a finite field extension of the field @ of rational
numbers. In [1, Prop. 3.4, 3.5, 3.6], Harrison has shown that for a
number field K, the primes are exactly the useful prime divisiors of
algebraic number theory and all of them when K is a normal exten-
sion of €. Since the definition of primes is made in arbitrary rings
with 1, it is desirous to investigate the concept for nonfields. Com-
mutative rings have been investigated considerably in [1] and [3]. A
locally finite field has no primes but {0} (see [1, Lemma 1.4]). Thus
one would expect & = Hom, (V, V) to be one of the simplest noncom-
mutative rings to investigate.

All rings are assumed to have an identity. If A and B are sub-
sets of a ring R and d a member of an R-module, dA denotes
{da/A € A}, Ad denotes {ad/a ¢ A), A-B denotes {ab/ac A,bec B} and — A
denotes {—a/ac A}, K will denote a locally finite field, V a finite
dimensional vector space over K, and & = Hom, (V, V) is the ring of
all K-linear transformations of V.

1. P-productive. A prime P of a ring is called finite if —1¢ P
infinite otherwise. P is finite if and only if —PcCP. Since the
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characteristic of K is not zero, every prime of & is finite. Let P be
a finite prime of &. Let

B, = {ae®/a-PcP},C, = {Bc®/P-BCP} .

We can define A, = B,NC, since P is a finite prime. For reference
see [1, Prop. 1.2, Prop. 1.3].

DEFINITION. Let P be a prime of 8. An element x of V is called
P-productive if x¢ Px. Here V is considered as a &-module by the
operation a-v = a(u) for ac®,ve V.

Let P be a prime of &. We consider K as embedded in & by
the isomorphism which sends & into %-1, for every k e K, 1, the identity
linear transformation of V. A straight forward generalization of
Prop. 2.1 in [1] gives that if o and b in K and their product ab is in
A,, then ac A, or be P. This gives the following:

Lemma 1.1. Let Pbe a prime of 8. Then KC A, and KN P={0}.

Proof. For any ac K, a # 0, there is a least positive integer m
with a™ = 1 since a is contained in a finite subfield F of K. Now
suppose a c KNP,a #+ 0. Then a™ =1, m a positive integer. Then
1=amecP since P is closed under multiplication. But since every
prime of ®& is finite, this cannot happen. So, KNP = {0}. Now for
any ae K,a # 0,a™ = 1 for some least positive integer m. Then if
agAp,a™ e P and also K so ™' = 0 and ¢ = 0 a contradiction. So
acA,. Thus KCA,.

ProrosiTION 1.2. Let P be a prime of &, Then there is an
element « ¢ V which is P-productive.

Proof. For each ac®, define V,={xcV/(1+a)-c=0. V,is
easily checked to be a subspace of V. The dimension of V over K
is finite so the dimension of V, over K is finite also. Among all ¢ c P
choose a S e P with dimg V; = dimg V, for all e P. Just suppose
Ve=7V. Then (1 + B)x =0 for all eV and so 1 + 8 =0. Thus
—1 = B¢ P a contradiction.

Since Vy == V, there is a ce V with ¢¢ V;. Let d =1 + B)e.
Then d is P-productive. For if not, we would have d ¢ Pd. So there
is a yeP with vd =d. Then for any ke K, (1 — )1 + Bkc =
B —7A+Be =k —7)d=1Fkd—vd) =0. Also, for any z¢e V,,
Q-1 +Br=1—-70=0. Hence 1+ 8 —v—7v68)Vs=0 so,
Ve Vs, and ce Vs_,_,s and c¢ Vs So dimy Vi ,_,s > dim, V5
which is a contradiction for 8 — v — v8e¢ P and dim, V; = dim, V,
for all ¢ P.
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2. Some preprimes of &. Let W and L be subspaces of V with
WcL and W+ L. Let T(L, W) = {a e /aLc W}. One may check
that T(L, W) is a preprime of . Let .7 = {T(L, W)/W and L sub-
spaces of V, Wc L, W= L}. Using the fact that @ is transitive [2,
Chapter, II, §4] we can tell when two members of .9~ are equal.

The first step is given by

LemmA 2.1. Let T(L, W) and T(L', W') be members of 7 .
T, WYCT(L, W) if and only if W cWcLcL'.

Proof. By choosing a basis of V in such a way that it is the
extension of a basis for proper subspaces, we will use transitivity to
assert the existence of linear transformations needed to give the
appropriate contradictions.

LcL'. For if not, there is an xc L with x¢ L’. Since Wc L
and W = L, there is a yeL,y¢ W. Thus there is an a ¢ ® with
all ={0}cW’ and ax =ye¢ W. So, acT(L', W) and a¢ T(L, W)
a contradiction.

W’'c W. For if not, there is an xe¢ W’ with x¢ W. Then since
Lc L/, we may find 8¢ ® with L’ = KxCc W’ and SL = Ka ¢ W.
Thus B¢ T(L', W') and B¢ T(L, W), a contradiction.

Conversely, if W/'cW and LCL’, one easily verifies that
T, WHYcT(L, W).

The following corollary gives the desired criterion for equality.

COROLLARY 2.2. Let T(L', W) and T(L, W) be members of 7 .
Then T(L', W) = T(L, W) if and only +f L =L and W =W’

3. The primes in ®. We remarked earlier that all primes of
& are finite since the characteristic of K is not 0. Thus

TuEOREM 3.1. & = {T(L, W)/W and L are subspaces of V,
Wc L,dim, L =1 + dim; W} is the set of all primes of ®.

Proof. Let P be a prime of &, There is a ve V which is P-
Productive, Prop 1.2. So v¢ Pv. One checks that Pv is a subspace
of V. Let Pv=W and L=Kv+ W. Now let aeP. Then
aWcWand ave Pv=W. So aLcW. Thus PcT(L, W). But
T(L, W) is a preprime containing P a maximal preprime so P= T(L, W).

Conversely, let T(L, W)e &?. Then an easy application of Zorn’s
lemma gives that T(L, W) is contained in a prime P, since T(L, W)
is a preprime. But then there are I’ and W’ of V with W' c L’
and dim, L' =1 + dim, W’ and we have T(L, W)c P = T(L', W').
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So by Lemma 2.1, Wc W' c L’ c L. But dimy L = 1 + dim, W gives
that W= W' and L = L’ since W’ == L’. Hence by Corollary 2.2,
(L, W) = T(L', W) = P so T(L, W) is indeed a prime.

4., The value monoid. For any prime P of a ring R, there is a
natural subring 4, of R which contains P. In our case A, = B, N Cs.
Then one can define for each zc R, P: x = {(y, 2)/y, 2 € R, yxz € P} and
for a and be R define a ~b if P:a = P:b. This defines an equivalence
relation on R. Let [a] denote the eguivalence class containing a and
let ", denote the set of equivalence classes of R. Define ¢,.(a) = [a].
Then é,: R— I'». When R is a commutative ring, ', is an abelian
group. See [1, 11 and Prop. 2.2]. We first characterize B, and C,.

LEMMA 4.1. Let P be a prime of &. Then there are subspaces
W and L of V with dimgzL =1+ dim, W and P =T(L, W) by
Theorem 3.1. Then B, ={ac@aWcW}=TW, W) and C, =
{e e S/aL. < L} = T(L, L), so that A, = T(L, L) N T(W, W).

Proof. Clearly T(L,L)CCy. Now let ¢ C,. Suppose aLC L.
Let V=L@D. Choose Be® with 8-L = {0}, B(v) = v forallve D.
Then Be P and BaL ¢ L, a contradiction. Hence ae T(L, L) and
T(L,L) = C,. Similarly B, =T(W, W). Hence A, =T(L, L)N T(W, W).

Now we can be more specific that in Lemma 1.1 and give a
characterization of A, in terms of P.

ProposITION 4.2. Let P be a prime of &. Then A, = PO K as
K-modules.

Proof. We already know that KcA, and PN K = {0}. Thus it
only remains to show that each ae A, is expressible as 8 + k, B e P,
keK. Let P=T(L, W) as Theorem 3.1 gives. Let L = KvpW.
Suppose ac A,. IfaceP,a=a+0,0cK. Soif a¢ P, aL ¢ W while
aLc L. Thusav =k +w,kceK,we W, Considera — k. aWcCW
gives (@ — k)W W since ke A,. Also,

a—kw=av—-—kv=k+w—Fkv=w.
So (@« — kywe W. Thus o« — ke T(L, W) = P, Hence
a=(a—-k)+kecPHK.
Hence A, = PP K.

We are now in a position to show that the monoids corresponding
to each prime P of & are all the same monoid.
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THEOREM 4.3. There is a natural associative monoid I with
zero element and a natural monoid homomorphism ¢ of & onto I’
such that for each prime P of &, I'y =1 and ¢p = 4.

Proof. We will outline the proof in the form of a series of claims,
whose proofs are straight forward but often lengthy. We leave their
proofs to the reader.

First of all we will show that if @ and 8 are in @ and there is
a ke K with 8 = ka then 8 ~, a where ~, denotes the equivalence
relation determined by any prime P of &. For if (7,0)e P:a then
vBd = vkad = kyade KPCP since KCA,. So (v,0)eP:8. Thus
P:ac P: 3. Similarly, P:8cP:«a, so Poa=P:8 and 8 ~,a.

Now if conversely we can show that if 8 ~,a then B = ka for
some ke K we will have shown that the equivalence relations ~, are
really all the same and hence the monoids /", and monoid homomor-
phisms ¢, are all the same for each P. To this end, let 8 ~, .

Claim 1. Let Kv be any one-dimensional subspace of V. Then
BKv = aKv.

Proof. Let 6e¢® with 6L = Kv,ve V. For (v,9) to be in P: a,
we must have yaKv c W. So choosing ve & with this true, one gets
(v,0)ePra=P.:8 and so vBKvcW. If BKw = aKv, one could
redefine a v,¢® with (v, 0)e P: 8 and (7, 6)¢ P:«. This contradic-
tion proves that SKv = aKv, so long as SKv = 0. The similar agru-
ment beginning with 8 will then show that aKv = BSKw.

This gives us that if ve V, there is an a € K, possibly depending
upon v, with Bv = aav. We will show that a is independent of the
choice of v.

Claim 2. If dim; aV > 1, then for any », and v, in V which are
linearly independent and Bv, = baw, and Bv, = cav,, we get b = c.

Proof. If aw, and av, are linearly independent, consider B(v,+v,)=
da(v, + v,) and one finds that b = d = ¢. If not, there is a ve V with
av and aw, linearly independent, since dim, @V > 1. Then also av and
av, are linearly independent. Consider Sv = eaw. Then one finds that
b=—¢ and e = ¢ so again b = ¢. This proves the claim.

Claim 3. If dimz aV =1, then Ker @ = Ker 8 and aV = Kv for
some ve V and BV = Kv also. In addition, if v" e V, v’ ¢ Ker «, then
B'v = bav’ and indeed B = ba.

Proof. For xzeKera, Bx = cax for some ce K and ar =0 so
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Bx =0 so Kerac Ker 8. By dimension arguments, Ker o = Ker 8.
BV =aV by the Claim 1. NowanyweVis w=2a + kv, zcKera =
Ker 8 and ke K. Then one checks that Aw = kBv = bkav’ = baw
since aax = 0 = ax. Thus B = ba.

Combining the last two claims, we see that if dim, aV =1, 8 = ax
for some a e K. If dim,aV > 1, then we showed ¢ is independent of
the choice of veV used to define it. Hence again S = aa. This
concludes the proof that if 8 ~,«, then 8 = aa, ac K.
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