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Let A be a finite-dimentional commutative Jordan algebra
over a field F of characteristic zero. Then we may write
A — S + N, S a semisimple subalgebra (Wedderburn factor),
N the radical of A, [5], [6]. If G is a completely reducible
group of automorphisms of A, then we may choose S to be
invariant under G, [4], If G is finite, then we showed in [10]
that any two such G-invariant S were conjugate via an auto-
morphism σ of A which centralizes G and which is a product
of exponentials of nilpotent inner derivations of A of the form
Σ[i? α { , RXi]9 Xi in JV, (Li in A, where Ra is multiplication by
a in A. It was conjectured in [10] that the various elements
Xi and di which occur in the formulation of a could be chosen
as fixed points of G. This conjecture was based on analogous
fixed point results proved for associative and Lie algebras, [7],
[8], [9], However, this conjecture is false, and we present in
this note a simple counter-example.

We consider three-by-three matrices over F. Denoting by eiά the
usual matrix units, set e — en + e22, f = e33 and x = β31. Consider the
Jordan algebra A with basis e, f, x and multiplication table
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Clearly A has a one-dimensional radical N — Fx, and S(0) =
Fe + Ff is a Wedderburn factor of A. By [2], all Wedderburn factors
are isomorphic, so are spanned by two orthogonal idempotents. The
only idempotents (nonzero) of A are (β/2) + ax, (f/2) + βx> a, β in F.
The only pairs of orthogonal idempotents are (e/2) + ax, (f/2) — ax,
a in F. Hence the Wedderburn factors of A are of the form S(a) =
F(e + ax) + F(f — ax), and clearly a~+S(a) is one-to-one.

A has two types of automorphisms, as can be seen by a direct
check. The first type A(δ, π), 3, π in F, π Φ 0, is given by:
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A(δ, π)

e —> / + δx

f --• e — δx

The second type B(δ, π), δ, π in F, π Φ 0, is given by:

—* e + δx

B(δ, π) f-*f-δx.

A calculation shows that S(a) B(δ, π) = S(aπ + δ), so that if π Φ \r

S((l — π)*^) is the only B(δ, 7r)-invariant Wedderburn factor of A*
If δ Φ 0, then B(δ, 1) fixes no Wedderburn factor, and B(0, 1) = I,
the identity mapping of A.

Turning to A(δ, π), we have that S(a)A(δ, π) = S(~-aπ - δ)..
Hence if π Φ — 1, S( — δ(l + π)-1) is the only A(δ, τr)-invariant Wedder-
burn factor of A. If δ Φ 0, then A(δ, —1) fixes no Wedderburn factor,
but A(0, —1) fixes all Wedderburn factors S(ά). Let G be the group
of order two generated by A(0, —1):

A(0, -1)

—x

Note that e — f and x are eigenvectors for the eigenvalue — 1 of
4̂.(0, —1), so that F{e + /) is the fixed point space of G. Re+f = 27,

and N has no nonzero fixed points under G, which disproves the
conjecture.

In checking the result of [10] in this example, let D = [Re~f, Rx] =
Re-fRx — RxRe-f. Then one can check that

<r = e x p ( ( - £ - = _ « _ )2>) = β-a D

will map S(a) onto S(β) for any a, β in F. Since e — f and x are
in the — 1 — eigenspace of -4(0, —1), the rule Q^R^g — Rag for a in
A, g an automorphism of A, shows that D commutes with A(0, —1),
so that σ centralizes G. This leads to the more complicated conjecture
that one can formulate σ in terms of inner derivations [Ra, Rx], a in
A, x in N, such that for any g in G, a and x are eigenvectors of g
corresponding to eigenvalues a(g) and β(g) respectively, such that
&(g)β(g) — 1. Such a σ will centralize G. We also note that this
conjecture and the fixed point conjecture are still open for alternative
algebras (see [10] for a precise formulation), although the fixed point
conjecture now seems unlikely for alternative algebras, in view of the
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above counter-example for Jordan algebras, due to the close relation
between alternative and Jordan algebras, [3]. We also remark that
for completely reducible G, the existence of a σ centralizing G is still
an open question. If N2 = 0, this is trivial (see [10], §5), and the
difficulty lies in the case N2 Φ 0. We also note that if F is any field
of characteristic not two, then our example has A/N separable and
N2 = 0, in which case the Wedderburn-Malcev properties hold, [1],
[2], [6], and any finite group G of order not divisible by the charac-
teristic of F will fix a Wedderburn factor, [6]. So our example also
shows that the fixed point conjecture is false for the case N2 = 0,
R/N separable.

We conclude with an example of an infinite group G which
illustrates the conjecture for completely reducible G that σ can be
chosen to centralize G, in a case where N2 Φ 0. Again considering
three-by-three matrices over F, let e — en + β33, x = e12, y — β23, z — e13.
Let A be the Jordan algebra with basis e, x, y, z and multiplication
table
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Clearly the radical N of A is N = Fx + Fy + Fz, i\P = Kz and iV3 = 0.
Clearly <S(0, 0) = Ke is a Wedderburn factor, and if we calculate the
elements / for which p — 2/, we find

f — Q + ax Ar βy — aβz, a, βeF.

Since all Wedderburn factors are isomorphic (we are assuming charac-
teristic zero), the Wedderburn factors are of the form

S(a, β) = F(e + ax + βy - aβz) ,

and the correspondence (a, β) —»S(a, β) is one-to-one on F x F.
Let δeF, φeF, φ Φ 0,1. Let A(δ, Φ) be the automorphism of A

given by:

/e —> e + Si/

x —•> # — δz
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A(δ, φ) is completely reducible, since A has a basis of eigenvectors
y, z, (1 — φ)e + 8y, (1 — φ)x — δz, the latter two being fixed points of
A(δ, φ). One can check that S(a, β)A(δ, φ) = S(a, δ + βφ), so that
S(a, δ(l — φ)-1) is fixed by G, the group generated by A(δ, φ), for
any a in F. For a, a' in ί7, set

D = (a' - a) {I - φ)-2[R{1-φ)e+δy, R{1-φ)x-8t] .

Then one can calculate that σ = exp D — I + D + (D2/2) carries
S(α, δ(l - φ)"1) onto S(α', <5(1 - φ)-1), and centralizes G since the
elements (1 — φ)e + δy, (1 — φ)x — δ̂ ; are fixed points of A(δ, φ). Note
that if φ is not a root of unity, then G is an infinite group.

Another automorphism B(δ, τ) of A, for δ, τ in F, τ Φ 0, is
given by:

B(δ, τ)

e —> β — δra; + δ̂ / +

a; —> τ~ιy + δa:

y —>τx — δτz

B(δ, τ) has a three-dimensional fixed point space spanned by e + δy,
z and τx + y, and an eigenvector τx ~ y — δτz for the eigenvalue — 1,
so that B(δ, τ) is completely reducible. Actually B(δ, τf — I, so G
here is a group of order two. One calculates that S(a, β)B(δ9 τ) =
S( — δτ + βτ, δ + αr" 1 ) . Hence S(a, δ + α τ"1) is G-invariant for any
aeF. Set D' = τ~\a' - a)[Re+δv, R7X+y] for α, α r e F. Then

σ- - exp Όf - / + D' + i ^ ί l

carries Sf(α, δ + αr^1) onto ίS(α:', δ + α'r" 1), and centralizes G since
e + δy and τα; + # are fixed points of B(δ, τ). Hence, in this case,
the fixed point property holds, although, as we have seen in our first
example, it does not hold for every finite group G.
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