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The purpose of this paper is to show the ease with which
certain methods from the theory of locally compact abelian
groups carry over to general compact groups. The principal
tool is a generalized Fourier transform which is a faithful
representation of the group algebra L'(G) (G compact) into a
direct sum of finite dimentional matrix algebras.

Only the space C(G) of continuous complex-valued functions of G
will be considered here, although the methods are also applicable to
L»{G).

The mapping RX[LX]: C(G) -+ C(G) by Rx(f)(y) = f(yx)[L,(f)(y) -
f(xy)] for each x e G gives an action of G on C(G). A closed subspace
of C(G) is called right [left] invariant if it is invariant under all
RX[LX] for xeG. Proposition 1 states that a closed subspace of C(G)
is right (left) invariant if it is a right (left) ideal of the convolution
algebra C(G). This fact is used in Theorem 2 to give another descrip-
tion of a closed right (left) invariant subspace in terms of the Fourier
transform. This description is the analog of the Spectral Synthesis
Theorem. Finally the notion of a Sidon set is used to describe certain
two-sided (both right and left) invariant subspaces of C{G).

The notation and definitions of [1] are used throughout the paper.

PROPOSITION 1. A closed subspace A of C(G) is right (left) in-
variant if and only if it is a right (left) ideal of the convolution
algebra C(G).

REMARK. Proposition 1 seems to be known. A proof may be
constructed along the lines of Theorem 7.12 of [6], or by using the
Fourier transform.

For the next theorem we recall from [1] the definition of the
Fourier transform and the algebra M = φ r e J B(Hr). Theorem 2 is an
exact analong of the Spectral Synthesis Theorem for locally compact
abelian groups. The "right" theorem is proved, but the "left" theorem
is also true by a similar proof.

THEOREM 2. If A is a closed right invariant subspace of C(G),
then there exists a unique self-adjoint projection peM such that
A = {feC(G):pf = f}.

Proof. For each r, Λ(A)r is a right ideal of B(Hr), thus (since
Hr is finite-dimensional) has the form prB(Hr), for some self-ad joint
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projection pr in B(Hr). Set p = {pr}rej. Let {%«}«€/ be a bounded, central
approximate identity as constructed in the proof of Theorem 3.4 of [3].
Since each ua is a trigonometric polynomial, (ua)r — 0 for all but a finite
set of re A. Thus Λĥ pί&J 6 A for each a e I. Clearly {/: pf = f} is a
closed right ideal which contains A, so we need only prove the reverse
inclusion. Suppose pf = /. Then Λ~\pua)*f e A, and (A^pO,*)* f)~ =
puaf — pfua = /# α — (f*wa)~ Thus by uniqueness of Fourier transform,
/ ί " 1 ^ ^ ) * / = / \ e i . Taking limits over a el, we get f eA, using
the fact that {ua} is a norm approximate identity for C(G).

REMARK. If the subspace A of Theorem 2 is two-sided invariant,
then A(A)r is a two-sided ideal of B(Hr) for each re A. Thus either
Λ(A)r = B(Hr) or Λ(A)r = {0}. Thus the projection p given by the
theorem would be a central projection in M.

It is to be emphasized that this paper is more an illustration of
technique than anything else. There are many technical problems
relating to noncommutativity, some of which are formidable. We are
indebted to the referee for pointing out one of them which necessitated
a correction in an earlier version of this paper.

We now turn to the case of two-sided in variance. The aim is to
give a version of Theorem 2.7 of [5].

DEFINITION. If A is a closed two-sided invariant subspace of C(G)
and A0(zA is a closed right invariant subspace, a projection T: A —• Ao

of A onto Ao is called locally self-adjoint if the linear functional
Φ(f) — T(f)(e) is self-ad joint on A, where e e G is the group identity.

PROPOSITION 3. Suppose A is a closed two-sided invariant sub-
spaces of C(G), and Ao is a closed right invariant subspace with Ao c A.
If T: A—>AQ is a bounded locally self-adjoint projection of A onto Ao

which commutes with right translations, then there exists m e M(G)
self-adjoint such that T(f) = m*f for all f eA.

Proof. Let e e G be the group identity. Then f—>T(f)(e) defines
a bounded self-ad joint linear functional on A, which thus extends by
the Hahn-Banach theorem to a self-adjoint bounded linear functional
meM(G) = C(G)*. Here the duality is given by

m(/) = \ f(χ-i)dm(x) .
JG

Now take feA and xeG and we get

(Tf)(x) = (RxTf)(e) = (T(RJ))(e) = \ (BJ){yrx)dm(y)
JG

= m*f(x) .
J
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DEFINITION. Let A be a closed 2-sided invariant subspace of C(G),
and let zeM be the central projection given by Theorem 2 such that
A = {fe C(G): zf = /}. Define the spectrum of A = sp (A) to be (using
notation of [1]) {reΛ:zr Φ 0}.

Proposition 3 and Theorem 4 are patterned after Theorem 2.7 of

[5].

THEOREM 4. Let A he a closed two-sided invariant subspace of
C(G). Then the following are equivalent.

( 1 ) If Ao is a closed right invariant subspace of C(G) and
Ao c Ay then there exists a bounded right-invariant locally self-adjoint
projection of A onto AQ.

( 2 ) The spectrum of A is a Sidon set (as defined in [1]).

( 3 ) Σ r β. drtr(\ frΰr | ) < ~ M dll f β A, Q £ L\G).

Proof. The fact that (2) ==> (1) and (2) — (3) are immediate con-
sequences of [1], Theorem 2.

Assume (3) is true. Fix feA. Then {r:fr Φ 0} is countable.
Enumerate the set as {rk}. For each positive integer n, define
Tn: L\G) -* F (the pre-dual of M as defined in [1]) by

TM = ±djrkgrk .

By assumption (3), Tn is a pointwise convergent sequence of bounded
operators and hence is uniformly bounded and by the uniform bounded-
ness theorem. Thus there exists a constant K with || Tn \ ^ K for all
n =• 1 , 2 , •••.

In {ua} is the approximate identity introduced in the proof of
Theorem 2, we have for any n — 1, 2, ,

J X ^ r \frk(ua)rk \aeI % ά r k t r \frk \ £ K .

Thus letting n —> ^ we have

Σ
By Theorem 2 of [1], sp (A) is a Sidon set.

Now assume (1) holds. Let z be the central projection in M such
that A = {/ e C(G): zf = / } . According to Theorem 2 of [1], we need
to show that for each unitary operator ue M there exists meM(G)
such that \\z(m — u) \\ < 1. Choose u e M unitary, and by the spectral
theorem choose self-adjoint projections ply , pn e M and scalars al9

• , an such that || u — Σί=i αfcP* II < l For each fe, define



424 C. A. AKEMANN

Ak = {feA:pJ=f}.

Then Ak is a closed right invariant subspace of A, so there is a bounded
right-invariant locally self-ad joint projection Tk:A —> Ak. By Proposi-
tion 3, there exists m e M(G) such that mf/ = T(f) for all / e A, and
mfc is self-adjoint. Now Λ(A) is dense in the weak* topology of zM
(since it contains all finite dimensional operators). Thus since m*m*f —
m*f for all f eA, ihkmkf = m j , and hence mkmkz = mkz. Since mk

is self-ad joint, so is mkt so mkz is a self-ad joint projection.
Since Λ(A)k is weak* dense in zpkM, and since m*f = f for / e Ak,

we get m f c >̂ 2%. If zm^ is strictly greater than zpk1 then there is
some g eA such that g = (m fc — z pJί/ Thus m* # g Afc, a contradiction.
Thus zm/c = zpk. Set m = Σί=i ak™k- Then

— in) II =

Thus (1) implies (2).

< 1 .

We remark that the proof of Theorem 1 of [7] can be used to
eliminate the need for rigt invariance in the projection of condition
(1) of the last theorem.
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