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In this paper, we give an internal proof of Rao's theorem
on meromorphic functions of bounded characteristic, i.e., a
proof not using uniformization.

In addition, we discuss the classification theory of Rie-
mann surfaces as it pertains to the class 0L of hyperbolic
Riemann surfaces which admit no nonconstant Lindelδfian
meromorphic functions. In particular, we show that UHB <=
OL where USB denotes the class of hyperbolic Riemann sur-
faces on which there exist at least one bounded MHB minimal
function.

We also show that there is no inclusion relation between
0L and OHD, n a natural number, where OHD denotes the class
of hyperbolic Riemann surfaces for which the dimension of
the vector lattice HD is at most n.

Finally, we generalize the F. and M Riesz theorem for i2Ί
of the unit disc to arbitrary open hyperbolic Riemann surfaces.

Let R be hyperbolic and R' be an arbitrary Riemann surface.
The mapping φ\R-+R! is called a Lindelofian mapping, if for each
a'eR',

G(z, a', φ) = Σ n(a)gR(zf a)
φ(a) = a'

is convergent for φ(z) Φ a! where n{a) denotes the multiplicity of φ

at a and g/t(z, a) is the Green's function of R with pole at a. If Rr

is the Riemann sphere, then φ is called a Lindelofian meromorphic

function. Sario and Noshiro [6] have generalized I the Nevanlinna

theory to the class of meromorphic functions on an arbitrary Riemann

surface and have shown that for hyperbolic surfaces, the meromor-

phic functions of bounded characteristic are precisely the Lindelδfian

meromorphic functions. Furthermore, they have shown that a mero-

morphic function φ(z) on a hyperbolic Riemann surface R has bound-

ed characteristic if and only if for each complex number α'

log I φ(z) - α ' | = G(Z, oo, φ) - G(Z, α', φ) + φa,{z) - φ'a,(z)

where φa,(z) and φ*.(z) are positive harmonic functions on R.

Let us now turn to the theorem of Rao.

THEOREM 1. If a nonconstant meromorphic function φ on a

hyperbolic Riemann surface R has bounded characteristic, then there

exists at most one complex number af such that the difference between
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the quasibounded components of φa, and φ'a, is constant.

As stated in the introduction, we now give an internal proof of
Rao's theorem. For the proof, we need the following lemmas.

Let Δι denote the set of points in the Martin boundary Δ of R
where the Martin function kb cannot be represented as the sum of
two nonproportional potentials. In addition, let X denote the canoni-
cal measure of 1 and / a continuous mapping of R into a compact
space. Denote by Ib the class of open sets GczR for which (kb)R_G,
the infimum of the class of positive superharmonic functions on R
which are quasi everywhere on R — G no smaller than kb, is a poten-
tial. Let f*(b) = Γ)Geibf(G). If f~(b) consists of a single point, we
denote the point by f{b). We shall now establish the following result.

LEMMA 1. If s is a singular positive harmonic function on R,
then s is defined χ a.e. on Δt and is 0 χ a.e.

Proof. Since s is singular, its quasibounded component is 0. It
follows from a result in [2] that s is defined χ a.e. on Δx and that

0 = ( sφ)kbdχ(b) .

Since s and kb are positive, it follows that s = 0 χ a.e.
A different proof of this result can be found in [3]. In addition

to Lemma 1, we will use the following, which are proved in [3].

LEMMA 2. G(z, α', φ) has the fine limit 0 χ a.e. on Δγ

LEMMA 3. If φ is a nonconstant Lindelofian meromorphic func-
tion on a hyperbolic Riemann surface R, then φ is defined χ a.e.
on Δ1 and the set of points φ(b) is a set of positive capacity.

We are now able to prove Theorem 1.

Proof. Suppose the conclusion of the theorem is false. Then for
some function φ of bounded characteristic on R and two complex
numbers a[ Φ a'2,

log I φ(z) - a'i I = G(z, o o , ? ) - G(z, ai9 φ) + k, + s^z) - s\{z)

for i = 1 and 2. s{ and s[ are singular positive harmonic functions
on R and k{ is a constant.

Since φ has bounded characteristic, it is Lindelofian, and we de-
duce from Lemmas 1, 2, and 3 that
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log I φ(b) - a\ I - ki , i = 1, 2,

for almost all b e Δγ.
Hence the points φ(b) lie on both circles

I ζ - α j I = e

k\ i = l,2,a[τt a[.

In view of the second part of Lemma 3, this is a contradiction
and the theorem is proved.

2. We now turn to the class OL. Rao [5] has shown that OHB

c OL. We shall prove the much stronger result that UHB c OL. In
addition, we shall prove a stronger form of Rao's Corollary 2.

Let φ be an analytic mapping from a Riemann surface R into a
Riemann surface R'. φ is called a Fatou mapping if φ has a contin-
uous extension to a mapping from the Wiener compactification of R
into the Wiener compactification of Rf.

It is shown in [2] that every Lindelofian mapping is a Fatou
mapping. It is also shown in [2] that if R e UHB, there exists no
nonconstant Fatou mapping of R into a parabolic surface. As imme-
diate consequences of these results, we obtain the following:

THEOREM 2. UHBczOL.

THEOREM 3. // there exists a nonconstant Lindelofian map φ
from a hyperbolic Riemann surface R into a parabolic Riemann sur-
face it!', then R g UHB.

3. Constantinescu and Cornea [2] have shown that if R is of
class UHB, then R e UHD where UHD denotes the class of Riemann sur-
faces on which there exist at least one bounded MHD minimal func-
tion. Punch out n pairwise disjoint discs F19 , Fn from R and re-
flect R — Fi about dFi for ΐ = 1, ••-,%. Weld the reflections to
R — \Ji=1Fi and denote the resulting surface by W. If Re UHB1 then
We UHB. Since R is also of class UHD, it follows that the Roy den
harmonic boundary of W possesses at least n + 1 points of positive
harmonic measure and hence that W'& On

HD. But by Theorem 2, We OL.
Hence OL<£On

HD. Since On

HΌφOL, we have established the following
result.

THEOREM 4. There is no inclusion relation between On

HD and OL.

We remark that Theorem 4 contains the result of Rao that there
is no inclusion relation between OHD and Oz.

It would be interesting to know if Theorem 4 can be strengthen-
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ed to read that there is no inclusion relation between UHD and OL.
The author has investigated this question but has been unable to
settle it.

4* Let us now turn to the class H^ of analytic functions on an
open hyperbolic Riemann surface R whose moduli possess a harmonic
majorant. We shall prove the following result.

THEOREM 5. If feHu then f is defined χ a.e. on Aι and

f=\ f(b)kbdχb.

Proof. Since feHιy it follows that the Ref and the Imf can be
written as the difference of quasibounded harmonic functions. Hence

Ref - ί ίte£(b)khdχ(b)

and

Imf = [ Imf (b)kbdχ(b).

Thus

/ = ( fφ)kbdχ(b).
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