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Suppose X is a reflexive Banach space and 7 is a con-
tinuous linear operator in X such that 11 Vn\\ ̂  M for some
M(w=0,l,2,...). If N is the null space of I- V and R is
the closure of the range of I— V, then the mean-ergodic
theorem states that

where P is the projection associated with N and R; the con-
vergence is in the norm of X. This is pointwise d-summability
of the sequence {V*}~=0 to P, and it suggests a similar theorem
for more general Hausdorff summability methods. The pur-
pose of this note is to demonstrate a wide class of operator-
valued Hausdorff summability methods which contain the
sequence {Vk}~=0 in their wirkfelder and sum it to certain
transforms of the projection operator P. This result shows
much more clearly the sense in which convergence actually
has meaning for such a sequence {F*}~=o

Denote by C(X) the space of X-valued continuous functions on

[0,1] and by Tι the bounded linear transformation from C(X) into X

S i

f{t)dt. The mean-ergodic theorem states that
o

In this setting, the main theorem of this paper states a much
stronger type of convergence; namely, that for any bounded linear
operator T from C(X) into a Banach space Y such that the generat-
ing function for T is continuous at 0 and 1, it is true that

(l - t)n-hVk x) > T(P x) .

In general one cannot expect much in the way of further relaxa-
tions on the operators Γ, i.e., on the functions which generate such
operators. For example if the condition of continuity at 1 is removed,
then this allows a generating function K(t) = 0 for ί < 1, K(l) = 1
and this generates the Hausdorff method corresponding to ordinary
convergence. In general the sequence {Vk>x} does not converge.

A nice presentation of the mean ergodic theorem as stated above
is to be found in Lorch [2, pp. 54-56]. Suppose 7 is a Banach space
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and μ = {μk}ΐ=0 is a sequence of elements of B[X, Y] such that the
Hausdorff method H — pμp generated by μ is regular relative to some
LeB[X, Y], (See [1] for notation and terminology. Reference 8 in
[1] is reference [3] of this paper.) It follows from [1] that there
exists a function K on [0,1J with values in B+[Xy Y] such that K
satisfies the Gowurin α>-property,

K(0) = 0, K(l) = L and μn = [dK(t) tn for w = 0,1, 2, .
Jo

THEOREM. // K is continuous at t = 0 and t = 1,
is pointwise H-summable to LP, i.e., Hn{Vk} x converges in the norm
of Y to LPx for each x e X.

The essential ingredient of the proof of the theorem is the follow-
ing lemma.

LEMMA. // {sj£L0 ^s a bounded sequence of elements of a linear
normed space S and 0 < α ^ ί ^ 6 < l , then

converges uniformly to zero for te[a, b].

Proof of the lemma.1 Suppose || sk \
then set

^N' for fc = 0 , 1 , 2 , . . . ,

An(t) - - t)*-k{sk - sk+1)

— V
— Σ

{l - * λ
L n-kΛ- 1

- t
t

- ί)"«o -

n + 1
-i _ fc n

+ 1

Σ
n n + 1

1 - * "
+ 1

The proof presented here is incorrect. See part 2 for a corrected proof.



AN EXTENDED FORM OF THE MEAN-ERGODIC THEOREM

where 0 < α ^ ί ^ 6 < l , and hence

541

t *=o

Let fn(x91) be given by

n
n n + 1 tn-N' .

n
n n + 1

x — t n
n + 1

V '
n

n + 1

and CM by

C»(ί) = ±Bn\fu(x, ί)] U

where I?% denotes the ^-th Bernstein polynomial. The above inequality
may now be written

and the second term converges uniformly to zero for t e [α, b].
The first term is treated as follows. By a direct calculation it

can be shown that for each xe[Q, b], the collection {fn(x,t)} is equi-
uniformly continuous in t for t e [0, 6], that is to say, if e > 0, then
there exists δ > 0 such that \fn(x, s) - fn(x, t) \ < ε/2 for all s, ί e [0, b]
such that I s — t \ < δ and for all n.

Consider a fixed t e [0, 6] and set A — {k: \k/n — t \ < δ} and B =
{0,1, ...,w} - A. Then

H (Σ + Σ)
A B

k \i - ty
X -

1

n
k
n

n

n

n
+
n

+

1

1

y < y
A k~0

k
ε

~2

Set Q = maXoSί,β^6/«(ίc, ί) for w = 0,1, 2, and the second term
can be treated as follows:

Σ^
B

which, as is well known, converges uniformly to zero for t e [0,1].
Hence, there exists an integer No such that Σ 5 < ε/2 for n > No

and further such that | BJfn(x, t)] - fn(x, t)\<e for n > JV0> both
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inequalities holding uniformly for 0 ̂  t ^ b. Collecting all these items
together yields

lim Cu{t) = -L = 0
t 1 - t

uniformly for ί e [ α , 6], and hence || An(t) \\s —>0 uniformly on [α, b].

Proof of the theorem. Let

Since N, R is a complementary pair in X, it is sufficient to inves-
tigate the behavior of Tn on each of these sets.

Suppose feN, i.e., Vf = f, then

= [dK(t) f =
J

**(!-«)—*/]
- K(0)]f =Lf= LPf .

Now suppose / e R and ε > 0, then there exists gr and /ι such that
/ = g - Vg + h where || h | | < e/4[l + TΓJίΓ]Λf. For this /,

tk(l - tγ~kVkh

(1 - ί )—*

<A

max

+ for all n .

H / | | F =

si +is:
J α F * * Jb

It is necessary to regard the norms on the right as 7** norms because
these integrals may exist only as elements in Y** and not as elements
in Y (see the remarks following Theorem 1 [3, p. 950].)

k(l - tγ-k[Vkg - Vk+1g]

and

dK(t)\±(l)tk(l-tγ-k[Vkg |
lr**

^ WfK 2M \\g\\z

^ W}K-2M \\g\
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Since K is assumed continuous at t = 0 and t = 1, there are values
for a and b sufficiently near, but distinct from 0 and 1 respectively,
such that each of Wo

aK and W\K less than ε/8M[l + | | ^ | | ] , With
these values of a and 6, there is n sufficiently large, by the above
lemma, that

max | | Σ ( ϊ V ( l - ty~h[Vhg - Vk+1g] x ^ ε/2[l + Wh

aK] .
a^t^b IU=0 \ κ /

Collecting all this together yields

II TJ\\y H ε

for all n sufficiently large. Thus

lim || Tnf\\γ = lim || TJ - LPf\\ = 0

since

LPf = θγ

and this completes the proof.
In case that Y = X and H is regular relative to /, then H sums

{Vk}ΐ=0 to P. In particular, any regular scalar-valued Hausdorff method
whose generating function K is continuous at t = 0 and t = 1 will
sum {Vk}ΐ=0 to P. The case treated in [2], corresponds to the case
here where K(t) = tl, i.e., the Cι method. The following example
illustrates the theorem for a nonscalar-valued Hausdorff method.

Suppose X = Y = H, a Hubert space. Suppose also that K is a
bounded resolution of the identity such that K(0) = 0, K(l) — I, K is
continuous at 0 and 1 in the operator norm, and K satisfies the
Gowurin ω-property. The approximating sums for integrals of the

form \ tndK(t) converge to the integral in the operator norm [2], hence
Jo

they converge in the sense given by Tucker [3]. Consider the moment

S I

tndK(t). As shown in [2], μx is a self-
0

adjoint operator in H, and if we denote it by A, it follows that
μn = An(n = 0,1, 2, . . .) where μ0 = K(l) = A0 = I. If {V%}ΐ=0 is a
sequence of operators as given in the theorem, and H{μ) is the Haus-
dorff summability method generated by {μn} = {An}, then

lim Σ ( ? )(4"-kAk) Vkx = Px

for all xeH, the limit being taken in the norm of H.
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PART 2

It has been pointed out that the proof of the lemma given above
is incorrect. It can be corrected in the following manner. As given,

Σ £Jί*(l-ί)-*
Z

k

n+1
1 - k

n + 1

+ t'N'.

Proceed as follows. For

^ Σ
a k=o

t -

1

n
k
+
k

1

n + 1

Suppose ε > 0 and pick 3 such that 0 < δ < {(1 - 6)ε/2/(l + ε|2)}.
For ί e [α, 6], set

At = U: 0
k

n + 1
< δj and ^ έ =|/b: t -

k

n + 1

Then

Σ
A

ί -

1 _ k

n + 1

= (Σ + Σ

Consider the sums separately.

Σ £ Σ(Σ (i - «)•
— 6 — 0

n + 1

2 2

t -
n + 1

For keBt,

+ 1 I)2

so
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Ύ Λ Ί ζ h i ϊ ^ ϊ Σ ( I ) t u

(1 - t)δ\n + I)2 k=o \ ic J n + 1 - k

~ t)-k+ι[(n + l)t -

(1 - t)δ\n + I)2 at \ k

t(1 - ί)δ 2 ίέί V k J V w + l

1 t(l - t) < b

(1 - t)δ2 n + 1 ~ (n

Collecting this together gives

II An(t) ||. g ^ ( A + 6 + ¥N' , for 0 < a £
α V 2 (w + l)δ2

which proves the lemma.
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