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The invariant subspaces of a direct sum of finitely many
copies of the adjoint of a monotone 1¢ shift are shown to
be spanned by the finite dimensional invariant subspaces that
they include. For the case of two copies of such a shift, the in-
variant subspaces are characterized in terms of a spanning
set of vectors, and all infinite dimensional invariant subspaces
are shown to be cyclic.

It was shown by Donoghue [2] that if an operator A on H* is
defined by Af(z) = zf(2/2), then A has a lattice of invariant subspaces
anti-isomorphic to w + 1. (This result has been generalized to a wider
class of operators by Nikolskii [4].) Crimmins and Rosenthal [1] have
shown that the direct product of two (or even countably many) lattices
of invariant subspaces is attainable as the lattice of invariant sub-
spaces of some operator. If B and C are operators on a separable
Hilbert space such that their spectra are disjoint and no part of the
spectrum of one is surrounded by spectrum of the other, then the
lattice of invariant subspaces of B @ C is the direct product of the
lattice of B by that of C. Thus, for example, their result gives the
lattice of (A + 1)@ A. This prompts the question: What is the
lattice of A A? One answer is given by Nikolskii [5] in terms of
operators in the commutant of A& A. Actually, his results are valid
for any operator that is a direct sum of a finite number of copies of
a monotone 17 shift (see [3], p. 97). Adjoints of such operators will
be studied in this paper, and the following results will be derived. The
invariant subspaces of such an adjoint are spanned by the finite dimen-
sional invariant subspaces that they include, and these are invariant sub-
spaces of finite dimensional nilpotent operators (Theorem 1 and Theorem
2, Corollary 2). The infinite dimensional invariant subspaces are cyclic
except possibly for a finite dimensional summand (Theorem 2, Corollary
3 and Theorem 3, Corollary 3). For a sum of two copies of the
adjoint of a monotone 1% shift, the invariant subspaces can be com-
pletely characterized in terms of a spanning set of vectors (Theorem
1, Corollary 1).

We begin by establishing some notation. Although the natural
setting for discussing shift operators is a sequence space, it will be
somewhat more convenient to deal with functions on the unit circle
X in the complex plane C. Let % be a finite dimensional Hilbert
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space, p normalized Lebesgue measure on X, and $ the Hilbert space
of measurable norm square integrable functions from X to % that
are analytic. Thus, to say F is in  means F is a measurable

function from X to 7 such that S | FlPdp > e, and if for each

integer n, ¢,(z) = 2", then SF@ﬁd)u = 0 whenever n is negative. (The
asterisk indicates the complex conjugate, and, as usual, functions that
differ only on a set of measure zero are identified.) For each non-

negative integer =, define w, by w, = \Fe}dy to obtain a sequence

of coordinates of F' in %/, and then F = X2, w,e,.
A bounded sequence {a,, a,, «t,, -- -} in C induces a weighted shift
operator S* on © which is defined by

1.1) S*F = 3 a,w,enss -
n=0

We will describe the invariant subspaces of the adjoint S of such an
operator for the case of a positive, monotonic and square summable
weight sequence.

The connection between shifts as defined here and direct sums of
shifts on 1% is established in a standard manner. Choose an ortho-
normal basis {w,, u,, + -+, 4,} for . Then, if Fis in , let f;(1 <
7 <m) be the sequence of Fourier coefficients with nonnegative index
of (F, u;), and identify F' with B f. P --- B f.. By this means, the
shift of multiplicity m, defined by (1.1), is identified with m copies
of the shift on 1* induced by the sequence {a,}.

2. Shifts of arbitrary finite multiplicity, For each nonnegative
integer n, let P, be the projection of § onto 7 that sends a vector
into its m'® coordinate; P, >.7,w,e; = w,. Define subspaces &, of 9
by ®, ={F: if j = n, then P,F = 0}, let . be » itself, and define
the index of a vector in  to be the smallest » such that &, contains
the vector. Consider a nontrivial invariant subspace I of S, and let
N be the largest integer such that It includes R&,. Let I, be
M N RKytus, 80 M, consists of all vectors in I having no nonzezo
coordinate beyond the N -+ %n®. Finally, let %7, be P,., .. Then
7. is a subspace of %, and the following assertion is easily verified.

Lemma 1. ¥+ ¥,2D ' D ¥ «--.

It will be shown that every invariant subspace of S is the span of
the finite dimensional invariant subspaces that it includes (Theorem 2,
Corollary). Theorem 1 below implies that every finite dimensional in-
variant subspace of S is included in K, for some integer n. The
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restriction of S to &, is a nilpotent operator of index » on a space of
dimension mn. Thus, all invariant subspaces of S can be produced by
forming spans of invariant subspaces of finite dimensional nilpotent
operators.

THEOREM 1. Ewvery invariant subspace of S which is infinite
dimensional or contains a vector of infinite index includes an infinite
orthonormal set of vectors of finite index.

Proof. If I is an invariant subspace of S and I contains vectors
of arbitrarily large finite index, then the Gram Schmidt process may
be used to complete the proof. Suppose therefore that I containg
a vector F = >\ ,w,e, of infinite index. Induction will be used to
establish the existence of an infinite orthonormal sequence {G,, G, G, - - -}
in M such that the index of (G, is no greater than n + 1. Let G_,
be 0. Suppose an orthonormal sequence {G,, G, ---,G,_,} has been
found, which is in I, is empty if m = 0, and has the asserted index
property. Let @, be the projection on &,, and let R, be the pro-
jection on the orthogonal complement of {G_, G, -+, G._}. Choose
a sequence of integers n(k) such that (1) || w,uyiumll = || w, || for all
Jjznk) +m, and (2) if H,; = Quu.R,S*"F then {H,/|| Huu ll}
converges in the finite dimensional subspace f,., to a unit vector G,,.
Then G, is orthogonal to {G_, ---,G,;,} and of index no greater
than m + 1. The proof will be completed by showing that G, is in IN.

Since {G,, G, +--,G,_} is included in &,, it follows that the
projection R, does not change the coefficient of e¢,. Thus,

(2.1) | Hoo || Z sy ** Qsngir—s || Woaiyam ||
The vector R, S"®F is in M for each k, and

2.2 I Houioy [T RWS*™ M F — G P = || || Huk) || Hoy — G |
+ 1 Huwy H—ljzzml;lajaj—ﬂ co s Qi Wi |

By the definition of G,, the first term on the right hand side of (2.2)
converges to zero as k& tends to infinity. The inequality (2.1), the
first condition on n(k), and the hypothesis that {«;} is monotonically
decreasing, imply that the second term on the right hand side of
(2.2) is no greater than «.>.7 .. &} inu—. This also converges to
zero as k tends to infinity, since {«;} is square summable. Thus, G,
is the limit of a sequence in IN; hence, it is in IN; and the theorem
is proved.

REMARK. The proof above is a modification of a technique devised
by S. Parrott to give an alternative proof of the result of Donoghue
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mentioned in the introduction. See [3], Problem 151.

From now on it will be assumed I is an infinite dimensional
invariant subspace of S. By Theorem 1 and Lemma 1, if & = N, %5,
then %"+ {0}. The next task is to describe a convenient basis (not
in general orthonormal) for M, O &, ( = M, N &), and it will suffice
to do this for the special case in which ¥ = %;. Let {v,, v, -, v,}
be an orthonormal basis for 7] and for each j(1 <j < p), let G, be
a vector of index N + n + 1 in I, that has v; as leading coefficient, i.e.,

G; = viey., + H; ,

where H; is a vector in &,.,. The set {S"G,, S"'G;, -+, G;} is
included in IR, for each j, and the projection of an appropriate
multiple of S"G; on the complement of &, is a vector F,;(0) in M
such that

(2.3) F(0) = v,ey .

Suppose {F;(0), F;(1), ---, F;(k — 1)} has been defined for &t < n» and
for each j. Define F(k) by

Fik) = (@yin@yins oo+ Qy) ' [(1 — QN)S%—ij
P k=

— 3 S (S*HGy, view i) Fi(m)]

i=1 m=

Thus F;(k) is a vector of index N+ k + 1 in M S &, such that its
N + k™ coordinate is v;, and all its other coordinates are orthogonal
to 7] i.e.,

k—1

FJ(IC) - vjeN-Hc + ZAO ’W(?:,j, k)el\'%—i ’

where w(t, 7, k) L 2. The vectors F,(k) make up the desired basis.
For each j(1 =<7 <k) and each k(k = 1), let wuik) = w(0,J7, k).
It will be shown that

2.4) Fyk) = 0,600, + ga(N, k, e — )exs ,
where «(N, k,0) =1 and

AN, kb, 1) = (Ayipa i@y *** Cyipd) (A @iy o=+ Qi)
Since the Fik), 1 <j <p, 0 <k < n) form a basis for M, 08,,
(2.5) SF(k) = tyrn i F(k — 1) + y_u;(k)ey_, .

It follows by induction, on equating coefficients of both sides of (2.5),
that
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'LU(’I/, j; k) = aN+k-—1w(?: _1) jy k — 1)/aN+i—1
= Ay @(N, b — 1,0 — Dk — 1)/@yris
= a(N, k, i)u;(k — 7).

For later use we insert here a fact concerning the coefficients
a(N, k, 7).

LEMMA 2. D) la(N,k, i) < oy, .Cy for k=2, where Cy =
ay’ 4 (A W)™ Dy O

Proof. Define ¢, as the quotient of the term on the left hand
side of the asserted inequality by (ay.._./ay)’. We claim that ¢,,, =
Cr + (Aypps/Cyrl).

For,

Crir — (Aysps/Cyr))’

k
=1+ Zd(aN+k—1/aN+i—1)2(aN+k——2 Cer Oy gy oo Oy o) S €
=

Since ¢, = 1, it follows ¢, <1 + a32, 32y @, and this implies the
assertion.

THEOREM 2. Let " be a nontrivial subspace of 7, let {v,v,, «+ -, v,}
be an orthonormal basis for 7, let {u;k), for 3 =1,2,---,p be
norm square summable sequences in ¥ -, and let N be a nonnegative
integer. Define Fik) forj =1,2, .-, pandk =0,1,2, --+ according
to (2.3) and (2.4). Then the (closed) span M of &, and all the vectors
F(k) is an invariant subspace of S such that Py (M N &yini)) = F°
for n=0,1,2,.--. Conversely, every invariant subspace M of S
such that P;,(M N ;) is % for 3 < Nand 7 for j > N is obtained
in this manner.

Proof. Given F'y(k) as above, the relation (2.5) holds, and there-
fore the span IN of the F,;(k) and K, is invariant under S. It will
be shown that Py.,(M N Kyi.e) = 7 at the end of the proof.

Let M be an invariant subspace of S such that P;(M N K;,,) is
7 if j < N and is a nontrivial subspace ¥~ of % if 5 = N. Then,
as above, each M, is spanned by K, and vectors F(k) for 1 <j<»p
and 0 < k < n which satisfy (2.3) or (2.4). It must be shown that
the sequences {u;(k)}y-, for 1 < j < p are norm square summable and
that the F,(k) span M O &,.

First, it will be shown that each sequence {u;(k)}i>, is bounded.
If one of them, which we denote simply {u(k)};-,, is not bounded, then
it has a subsequence {(u(k’)} with the properties || u(?)|| < ||u(k')|| if
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1 £k, and {u(k)/||w(k')||} converges to a unit vector w in 7.
Extending the convention of dropping subscripts to indicate all vectors
with the same subscript as the unbounded sequence {u(k)}, we then
have that ||w(k’)|[7'F(k’) is in M for each k, and

ulle') = F () — ey = (| u(k) ~“ulk’) — e,
SN, K ) ) [Pl = e+ () [ oe

As will be shown, the right hand side converges to zero as k tends
to infinity. It follows that we, is in I which is impossible since ue,
is orthogonal to IN,, and this contradiction implies boundedness. To
return to the above equation, note that the first term on the right
hand side converges to zero by the choice of the subsequence, and
the third term also does since {|| u(k’)||"'} converges to zero. As for
the second term, the summands are orthogonal and of norm less than
or equal «a(N, k', ©); therefore, the norm squared of the second term
is no greater than ¥ ' a(N, k', 1)?, which tends to zero as & tends
to infinity by Lemma 2. The proof of boundedness is complete, so
there is a constant 8 such that ||u;(k)|| < B for all 7 and k.

Suppose next that one of the sequences {u;(k)};., is not norm square
summable, and denote this sequence {u(k)}. To derive a contratiction,
the first step will be to produce a square summable sequence of complex
numbers o, together with a sequence of integers n(j) such that the
vectors w,; in "+, defined by

}
w; = L Uku(k) y

are all of norm at least one. This may be accomplished by taking
an orthonormal basis {x,, x,, ---,%,} for "' and considering the ¢
sequences {(u(k), x;)};=,.. By the Parsevaal identity at least one of
these sequences, which we denote {(u(k)), )}, is not square summable,
Choose a square summable sequence {s,} such that o, (u(k), ) = 0 and
S o uk), ) = o (see [3], p. 14), and corresponding to each j choose
n(7) such that

n(i)

ou(u(k), ©) > 1.

With these choices,
n{Jg)
HwJH g 1(}; O.Icu(k)’ x)i > 1 ’

and the first step is complete. Next, take a subsequence {w;} such
that {w, /|| w; ||} converges to a unit vector w in 2"*. The contradic-



INVARIANT SUBSPACES OF A DIRECT SUM OF WEIGHTED SHIFTS 593

tion now arises because the sequence {||w; ||~ >t o, F(k)} in IM
converges to we,, which is orthogonal to I:,. (As above, F(k) denotes
that F;(k) with the same subscript as the sequence {u(k)}.) To see

this, write F(k) = vey., + G(k) + u(k)ey, where
G) = 3, @, &, iyulk — iey. ,

and consider the difference
n(j’) n(g’)
([ w;. H_lkz 0 F(k) — wey = [[w; H_lkz OVey 1
=i’ Iy
n(3’) n{j’)
(173 0G0 + (w0, |3, o,ulk) — we, .
:_.J’ :]/

On the right hand side of this equation, the first term tends to zero
as j tends to infinity because the sequence {g,} is square summable,
and the third term also does so by the choice of the subsequence {w,}.
By Lemma 2, || G(k) || < B8CY¥cty 1. Thus, by the triangle inequality and
the fact that |Jw; ||™ <1, the second term is no greater in norm
than BCY* 3290 |0, | @y, Which tends to zero as j tends to infinity
since both {0,} and {a,} are square summable. Hence each of the
sequences {u;(k)}7-, is norm square summable.

To complete the proof we will need the fact that for each 7,
{0.F;(k)}r_, is summable in $ whenever {o,} is a square summable
sequence of complex numbers. If m and n are integers, then, drop-
ping the subscript 7 and using the notation introduced in the preceding
paragraph, we may write

kgng(k) = kﬁ;ﬂ O Veyir + k;ﬂ a,.G(k) + kin aguk)ey .

As above, the first two terms on the right hand side can be made
small by taking m and n sufficiently large, but in addition the third
term has norm no greater than >)i., |o.| |l u(k)||, which can also be
made small by taking m and % large since {||u(k)||} is now also known
to be square summable. This implies that {o,F,(k)}7., is summable
in 9.

To see that the F';(k) span I © &, suppose F' in M is orthogonal
to Ry; define o;(k) by o,(k) = (F,v;eyy,) for £ =0,1,2, ... and j§ =
1,2, ..., p; and define G by G = 32, 3w, 0{k)F(k). By the remarks
of the preceding paragraph the definition of G is permissible, and thus
F — @ is a vector in M © K, such that P, (F — G) is orthogonal to
2~ for all m. If F' — G were not zero, then the technique of Theorem
1 could be employed to produce a vector in 2, orthogonal to {F(0),
Fy0), ---, F(0)}, which is impossible. Thus F = G and the vectors
Fy(k) span MO K.
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The final step is to supply the proof that if I is the span of &,
and the vectors F,(k), then P, ..M N Ky.pr) = 7 for n =0,1,2, --. .
That the set on the left includes the one on the right is clear. To
obtain the opposite inclusion, by Lemma 1, it will suffice to prove
that if w is any nonzero vector in "%, then we, is at a positive
distance from the span of the F (k). For each j (1 £j < p), let
{o;(k)}z_, be any eventually null sequence of complex numbers. Then

lwey = 3 B o, F®) I = || 3, 5 05kwe

1w = 3 3 k(e |
=3 S 10,®F + 1w — 3 3 au |,

and the sum on the right may be shown to be bounded away from
zero independently of the choice of the o;(k). This completes the
proof of the theorem.

COROLLARY 1. If % has dimension two, then every nontrivial
wmvariant subspace of S is either finite dimensional or else consists
of the span of &, for some N(= 0) and a sequence {F,}3., in which
each F, is of index N +n+ 1. Thevectors F, may be defined by means
of an orthonormal bastis {v, u} for Z and a square summable sequence
{o}e= i C: F, = vey; and if n > 0, then

n—1
Fn = ,Ue:V+n + ZO a(Ny ny j)(on——quVij .
i

REMARK. A complete description of the finite dimensional invariant
subspaces of S in the above terms may also be given in this case.
For a finite dimensional invariant subspace, the sequence {F',} is merely
finite or nonexistent.

Proof. If Z has dimension two, then every nontrivial infinite
dimensional invariant subspace of S satisfies the conditions of the
theorem with p = 1.

COROLLARY 2. FEwvery invariant subspace of S is spanned by the
finite dimensional ones which it includes, and each of these consists
of wvectors of finite index.

Proof. Since 9 itself is spanned by the finite dimensional invariant
subspaces &,, it is sufficient to consider the case of a nontrivial infinite
dimensional invariant subspace 3% of S. Define the sequence of sub-
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spaces 7, of Z7 as in Lemma 1. In general the intersection ¥~ of
these subspaces will be smaller than 27;, but Lemma 1 and Theorem
1 imply it will be nontrivial. Let ¢/; be the first subspace in the
sequence which is equal to 7 If M = N + ¢, then define N as
M + K, to obtain a (closed) invariant subspace of S which satisfies
the conditions of Theorem 2. Clearly,

‘Rzm + (RM@SZRqHI)y

and this is a direct sum decomposition of 9. Since &, © M,_, is finite
dimensional, the projection of 9 onto M along &, © IM,_, is continuous.
Thus, if F' is in M, then it is the limit of a sequence of vectors of
finite index in M. The image of this sequence under the projection
on I is a sequence of vectors of finite index in IN, and it also con-
verges to F. This proves the corollary.

COROLLARY 3. FEwvery itnvariant subspace of S is the sum of a
cyclic subspace and a finite dimenstonal tnvariant subspace of S.

Proof. It may be shown that $ itself is cyclic (see [3], p. 282,
for an analogous situation). Suppose I is an invariant subspace of
S that has the form required for an application of Theorem 2,
and let F';(k) be the set of vectors that spans It © &,. Define F' by

oo

F =33 (0k + 5)7"Fi(pk + J) ,

k=0 j=1

and consider the sum N’ of the cyclic subspace generated by F' and
the finite dimensional invariant subspace &,. Since the projection of
S,.F;(k) on the orthogonal complement of I, is

Qyigoy *** Qyig Ji(k — m)

if k¥ = n, an induction argument may be used to show that IX’ contains
all the Fyk), and thus I’ includes M. The opposite inclusion is
trivial, and the proof for the special case is complete.

If M is an arbitary nontrivial infinite dimensional invariant sub-
space of S, then define N as in the proof of the preceding corollary.
Take a vector F' in M such that the sum of the cyclic subspace it
generates and &, is M. There is a vector G in I such that the
difference F' — G has index at most It. Consider the sum IR’ of the
cyclic subspace generated by G and the finite dimensional invariant
subspace M,_,. It is clear that I’ is included in M. If H is in M,
then H = F, + F,, where F, is in the cyclic subspace generated by
F, and F, is in &,. Further, F, = G, + G,, where G, is in the cyclic
subspace generated by G, and G, is in &,. Then H -G, =G, + F,
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is in M N K,, i.e., in M,_,, and it follows that H is in M’'. This
establishes that I is included in IM’, which completes the proof.

REMARK. In case % is two dimensional every infinite dimensional
invariant subspace of S is cyclic (Theorem 3, Corollary 3). This is
not true for higher dimensions, as may be seen by considering the
case in which % is three dimensional and the invariant subspace is
the sum of &, and a slice through a one-dimensional subspace of % .

3. Shifts of multiplicity 2. In the special case under considera-
tion a complete characterization of the invariant subspaces of S has
been obtained (Theorem 2, Corollary 1). An infinite dimensional invari-
ant subspace (N, v, u,{0.}) is determined by a nonnegative integer
N, an orthonormal basis {v, u} for 2, and a square summable sequence
{o.} in C. It is easy to see that M(N, v, u, {0.}) = M(N', v, u, {0'.})
if N = N’ and there exist complex constants « and B of modulus
one such that v = av’, w = Bu’ and p, = aB*p’,. The converse of this
statement is contained in the following theorem.

THEOREM 3. If {v,u} and {v', '} are bases for Z/, and if {0.}
and {0,} are square summable sequences in C, then

m(My v, u, {(Ok}) - EIR(N) 7)” u,! {Ok})

if and only if

(1) M=N,

(2) there exist constants a and B of wunit modulus such that
v =av', u = Bu and

(3) pp=0.a(M,N - M+ k, N — M) aB*.
The inclusion is proper if and only if M < N.

Proof. Suppose the three conditions are satisfied for invariant
subspaces I and N, where M = M(M, », u, {0,}) and N = M(N, v/, &/,
{o.}). Let F', be the sequence in IN determined by wv,u and the
sequence {o,}, and let {G,} be the analogous sequence in N. Since
condition (1) implies that &, is included in N, it suffices to show that
F, is in N for each n. This is immediate if n < N — M, for then
F, is in the span of &, and v'e,. If k& > 0, then a calculation using
the third assumption shows that

a(M,N — M + k, N — M + j)pi—; = &(N, k, j)o,_,aB*
for each j7(0 < j < k), and it follows from this that

Fy yi=0aG, + H,,
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where H, is a vector in &,. Thus I is included in 9.

Conversely, suppose I and N are two invariant subspaces of S,
as in the preceding paragraph, such that 0 includes M. Trivially,
&, 1s included in N, and this implies M < N, Since Fy_,, = vey + H,,
where H, is in &, it follows ve, = aG, = av’ey, where « is a complex
number of unit modulus. Hence, v = av’. Since

Fy sy =veyy + (M, N — M+ 1, N — M)pue, + H, ,
where H, is a vector in &,, it follows that
Fy oy — H, = aG, = av'ey,, + acw'ey ,
and hence, v = Bu’ for some B of unit modulus, and
o,=00M,N— M-+ 1, N— M)y af*.

Similarly, Fy_,., is in N; its projection on the orthogonal comple-
‘ment of &, is aG,; and a comparison of the coefficient of e, in this
projection with the corresponding coefficient in G, yields the third
condition.

Finally, it is clear that the inclusion is proper if M < N. If I
is included in | and M = N, then since NN Ky., has dimension
2N + k, and includes {F,, F, ---,F,_} and 8,, it follows that
NN Ryse = M N Kysr. Hence M =N and the theorem is proved.

COROLLARY 1. Amn infinite dimensional invariant subspace
IM(N, v, u, {6,}) of S properly includes another infinite dimensional
wvariant subspace of S if and only 1f N > 0 and S5, | 04/Cu i [P < 0.

Proof. If the condition holds, then IM(N — 1, u, v, {&y_.00/Cyrr_1})
is an invariant subspace of S which is properly included in the given
one. Conversely, if (M, v, u, {0,}) is properly included in IN(N, v, u,
{o:}), then 0 < M < N, and

laMo-k/aN+k—-1[ §C((M,N—— M + k:N— M)”llak| = [(okl .

Hence, square summability of {o,/ay,,_,} follows from that of {po.},
which completes the proof.

COROLLARY 2. Ewvery infinite dimensional invariant subspace of
S includes at most finitely many infinite dimensional invariant
subspaces of S, and these are linearly ordered.

Proof. This follows directly from the theorem and preceding
corollary.



598 ERIC A. NORDGREN

COROLLARY 3. FEwvery infinite dimensional tnvariant subspace of
S 1s cyclic.

Proof. Let I be an infinite dimensional invariant subspace of S.
The case of N trivial was considered in Corollary 3 of Theorem 2, so
we suppose It = M(N, v, u, {6}). Let I be the unique minimal infinite
dimensional invariant subspace of S included in 0, and let F be a
vector of infinite index in M. If N =M, then F is cyclic for N,
and we are done., If I is properly included in %, then define G by
G = F + vey_,, and let %' be the cyclic subspace determined by G.
Since N is included in N and since I is the unique minimal infinite
dimensional invariant subspace of S included in R, it follows that N
includes 9. Thus F is in N’; ve,_, is in W; and it follows easily
that &, is included in V. But this implies that 3% = %, and hence
N is cyclie.

REMARKS. 1. The dimension condition in Corollary 3 is clearly
necessary since &,, for example, is not cyclic.

2. Throughout this paper it has been assumed that the sequence
{a,} which determines S is monotonically decreasing and square sum-
mable. In fact, it is possible to get by with a somewhat weaker
hopothesis. If the sequence {«,} consists of positive terms, is eventually
monotonically decreasing and belongs to some 1?7 class (0 < p < ),
then all the above proofs may be modified to yield the same results.
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