Pacific Journal of Mathematics

ON UNICITY OF CAPACITY FUNCTIONS

AKIO OSADA

Vol. 28, No. 1 March 1969

ON UNICITY OF CAPACITY FUNCTIONS

AKIO OSADA

Sario's capacity function of a closed subset γ of the ideal boundary is known to be unique if γ is of positive capacity. The present paper will determine the number of capacity functions of γ in terms of the Heins harmonic dimension when γ has zero capacity, under the assumption that γ is isolated. This includes the special case where γ is the ideal boundary.

1. Capacity functions. Denote by β the ideal boundary of an open Riemann surface R in the sense of Kerékjártó-Stoïlow. We consider a fixed nonempty closed subset $\gamma \subset \beta$ which is *isolated* from $\delta = \beta - \gamma$. Throughout this paper D will denote a fixed parametric disk about a fixed point $\zeta \in R$ with a fixed local parameter z and the uniqueness is always referred to this fixed triple (ζ, D, z) . Here we do not exclude the case where $\gamma = \beta$.

For a regular region $\Omega \supset \bar{D}$ we denote by $\gamma_{\scriptscriptstyle \Omega}$ the part of $\partial \Omega$ which is "homologous" to γ . The remainder $\delta_{\scriptscriptstyle \Omega} = \partial \Omega - \gamma_{\scriptscriptstyle \Omega}$ consists of a finite number of analytic Jordan curves $\delta_{\scriptscriptstyle \Omega_j}$. For a regular exhaustion $\{R_n\}_{n=0}^\infty$ with $R_0 \supset \bar{D}$ and nonempty $\gamma_{\scriptscriptstyle R_0}$, set $\gamma_n = \gamma_{\scriptscriptstyle R_n}$ and $\delta_{\scriptscriptstyle nj} = \delta_{\scriptscriptstyle R_n j}$. Then there exists a unique function $p_{\scriptscriptstyle T_n} \in H(R_n - \zeta)$ satisfying

(a) $p_{\gamma_n} \mid D = \log \mid z - \zeta \mid + h_n(z)$ with $h_n \in H(\overline{D})$ and $h_n(\zeta) = 0$, (b) $p_{\gamma_n} \mid \gamma_n = k_n(\gamma)$ (const.) and $p_{\gamma_n} \mid \delta_{nj} = d_{nj}$ (const.) so that $\int_{\delta_{nj}} *dp_{\gamma_n} = 0$, which is called a capacity function of γ_n (Sario [6]). It is known that $k_n(\gamma)$ increases with n and the limit $k(\gamma)$ is independent of the choice of $\{R_n\}_{n=0}^{\infty}$. We call $e^{-k(\gamma)}$ the capacity of γ and denote it by cap γ . When cap $\gamma > 0$, p_{γ_n} converges to a functions p_{γ} , which is independent of the choice of the exhaustion (Sario [6]). Even when cap $\gamma = 0$, we can also choose a subsequence of $\{p_{\gamma_n}\}$ which converges to a function p_{γ} . Such functions p_{γ} will be called capacity functions of γ (Sario [6]). As mentioned above there exists only one capacity function when cap $\gamma > 0$.

It is the purpose of this paper to determine the number of capacity functions p_{γ} when cap $\gamma = 0$.

2. The harmonic dimension of γ . Let R, β , γ and δ be as in 1. Furthermore we suppose that γ is of zero capacity. For a regular region $\Omega \supset \overline{D}$ we denote by V_{g_i} components of $R - \overline{\Omega}$ whose derivations are contained in γ and by W_{g_j} the remaining components. Here an ideal boundary component will be called a derivation of V_{g_i} when it is contained in the closure of V_{g_i} in the compactification of R. Here-

after we always choose Ω so large as to make the derivations of $W_{\alpha} = \bigcup_{j} W_{\alpha j}$ contain in δ . Therefore W_{α} is always a neighborhood of all of δ .

We consider the normal operator $L_1^{(a)}$ with respect to $R - \bar{Q}$ associated with the partition $P = \gamma + \sum_j \delta_j$ of β where δ_j is a component of δ (Ahlfors-Sario [1]).

Let q be a harmonic function in $R-\zeta$. Then q will be called of L_1 -type at δ when $q=L_1^{(a)}q$ in W_a for an admissible Ω . It is easy to see that this property depends only on δ , i.e., if $q=L_1^{(a)}q$ in W_a , then $q=L_1^{(a')}q$ in $W_{a'}$ for every admissible Ω' .

We denote by $HP_{\scriptscriptstyle 0}(V_{\scriptscriptstyle Q})$ the family of functions u such that u is a positive harmonic function in $V_{\scriptscriptstyle Q}=\bigcup_i V_{\scriptscriptstyle Qi}$ with boundary values zero at $\gamma_{\scriptscriptstyle Q}=\partial V_{\scriptscriptstyle Q}$. We may extend u to be identically zero in $W_{\scriptscriptstyle Q}$. Moreover we consider the following two families of functions. The first family $N_{\scriptscriptstyle Q}$ consists of $u\in HP_{\scriptscriptstyle 0}(V_{\scriptscriptstyle Q})$ such that $\int_{\tau_{\scriptscriptstyle Q}} {}^*du=2\pi$ where $\gamma_{\scriptscriptstyle Q}$ is positively oriented with respect to Ω . The second family is the family F of $q\in H(R-\zeta)$ having the following properties:

- (c) $q \mid D = \log |z \zeta| + h(z)$ with $h \in H(\overline{D})$ and $h(\zeta) = 0$,
- (d) q is of L_1 -type at δ ,
- (e) q is bounded from below near γ .

In addition to the obvious fact that N_{g} and F are convex, they are related to each other as follows.

Lemma. There exists a bijective map T of N_a onto F satisfying

- (f) $T(\lambda u + (1-\lambda)v) = \lambda Tu + (1-\lambda)Tv$ for $u, v \in N_a$, $0 < \lambda < 1$,
- (g) Tu u is bounded in V_{α} .

For the proof let $u \in N_{\varrho}$ and denote by L the direct sum of $L_1^{(\varrho)}$ and the Dirichlet operator with respect to D (Sario [5]). Take the singularity function s_u on $(R-\bar{\varrho}) \cup (D-\zeta)$ defined by $s_u=u$ in $R-\bar{\varrho}$ and $s_u=\log|z-\zeta|$ in $D-\zeta$. Since the total flux of s_u is zero, the equation $p-s_u=L(p-s_u)$ has a unique solution p_u on R, up to an additive constant. Normalize p_u so as to satisfy (c) and set $Tu=p_u$. Obviously $Tu\in F$. Since γ is of zero capacity, T is clearly injective. The property in (f) and (g) follows easily from the definition of T.

To see the surjectivity let $q \in F$. We denote by Bq the bounded harmonic function in $V_{\mathcal{Q}}$ with the boundary values $q \mid \gamma_{\mathcal{Q}}$ at $\gamma_{\mathcal{Q}}$. Set u = q - Bq in $V_{\mathcal{Q}}$ and u = 0 in $W_{\mathcal{Q}}$. Since q is of L_1 -type at o and bounded from below near $\gamma, u \in N_{\mathcal{Q}}$. Therefore we have only to show that $q - s_u = L(q - s_u)$ in $(R - \overline{\mathcal{Q}}) \cup (D - \zeta)$. By the definition of u, q - u = Bq in $V_{\mathcal{Q}}$ and $L_1^{(\mathcal{Q})}(q - u) = L_1^{(\mathcal{Q})}q$ in $V_{\mathcal{Q}}$. Furthermore $Bq - L_1^{(\mathcal{Q})}q$ is bounded in $V_{\mathcal{Q}}$ and vanishes on $\gamma_{\mathcal{Q}}$. Hence $Bq = L_1^{(\mathcal{Q})}q$

in V_a . On the other hand, $L_1^{(a)}(q-u)=L_1^{(a)}q$ in W_a . Consequently q-u=L(q-u) also in W_a . Finally it is obvious that the same equality holds in $D-\zeta$.

- 3. We denote by M_a the set of all minimal function in $HP_0(V_a)$ normalized as $\int_{\tau_a}^* du = 2\pi$. Lemma 2 guarantees that the cardinal number of M_a is independent of the choice Ω . Extending Heins' definition (Heins [3]), we call it the harmonic dimension of γ , which we shall denote by d_{γ} .
- 4. The number of capacity functions. We are now able to state our main result:

Theorem. Suppose that γ is an isolated closed subset of zero capacity in the ideal boundary of R. If the harmonic dimension of γ is 1, then the capacity function of γ is unique. If the harmonic dimension of γ is greater than 1, there are a continuum of capacity functions of γ .

Denote by C_{γ} the family of all capacity functions of γ , by c_{γ} the cardinal number of C_{γ} and also by ψ the cardinal number of the continuum. Then the statement of our theorem can also be summarized in a single formula as follows:

$$(1)$$
 $c_{r}=1+(d_{r}-1)\psi$.

5. Before entering the proof we need two lemmas, which will be used to show that $C_7 = F$. Let R_n , γ_n and δ_{nj} be as in 1. Set $V_{ni} = V_{R_n i}$ and $W_{nj} = W_{R_n j}$ (see 2). Moreover put $\Omega_{0n} = R - \bar{V}_0 - \bar{W}_n$ with $V_0 = \bigcup_i V_{0i}$ and $W_n = \bigcup_j W_{nj}$.

LEMMA. Let $p \in F$. Then there exists a sequence $\{p_n\}_{n=0}^{\infty}$ with $p_n \in H(\Omega_{0n} - \zeta)$ satisfying

- (h) $p_n \mid D = \log |z \zeta| + h_n(z)$ with $h_n \in H(\overline{D})$ and $h_n(\zeta) = 0$,
- (i) $p_n \mid \gamma_0 = p + k_n$ (const.) and $p_n \mid \delta_{nj} = d_{ni}$ (const.) with

$$\int_{\delta_{nj}}^{} *dp_n = 0 ,$$

(j) $\{p_n\}$ converges uniformly to p on any compact K with

$$ar{K}\!\subset\! arOmega_{\scriptscriptstyle 0} = R - ar{V}_{\scriptscriptstyle 0} - \zeta$$
 .

For the proof construct p_n with (h) and (i) by the linear operator method of Sario [5]. Denote by D_{ε} a parametric disk about ζ with

154 AKIO OSADA

radius ε and by α_{ε} its circumference. We orient α_{ε} and γ_{0} negatively with respect to $\Omega_{0n} - \bar{D}_{\varepsilon}$ and write according to Ahlfors-Sario [1]:

$$A_{arepsilon}(p) = \int_{lpha_{arepsilon}+7_0} p^* dp \; , \; \; \; B_{\scriptscriptstyle n}(p) = \int_{artheta_{\scriptscriptstyle n}} p^* dp \; , \; \; \; A_{\scriptscriptstyle arepsilon}(p,q) = \int_{lpha_{\scriptscriptstyle arepsilon}+7_0} p^* dq$$

and

$$B_n(p,q) = \int_{\delta n} p^* dq$$
.

For m>n we denote by $D_{n,\varepsilon}(p_m-p_n)$ and $D_n(p_m-p_n)$ Dirichlet integrals of p_m-p_n taken over $\Omega_{0n}-\bar{D}_\varepsilon$ and Ω_{0n} respectively. Since $B_n(p_n)=0,\ B_n(p_n,p_m)=0,$

$$D_{n,\varepsilon}(p_m-p_n)=B_n(p_m)+2A_{\varepsilon}(p_n,p_m)-A_{\varepsilon}(p_n)-A_{\varepsilon}(p_m)$$
 .

Observing that $B_n(p_m) < 0$ and letting $\varepsilon \to 0$,

(2)
$$D_{\scriptscriptstyle n}(p_{\scriptscriptstyle m}-p_{\scriptscriptstyle n}) \leqq a_{\scriptscriptstyle m}-a_{\scriptscriptstyle n} \,\, ext{where} \,\, a_{\scriptscriptstyle j} = \int_{ au_0} p^* dp_{\scriptscriptstyle j} + 2\pi \, k_{\scriptscriptstyle j} \quad (j=n,m)$$
 .

Moreover we construct another sequence $q_n \in H(\Omega_{0n} - \zeta)$ satisfying

(h')
$$q_n \mid D = \log \mid z - \zeta \mid + h'_n(z)$$
 with $h'_n \in H(\bar{D})$ and $h'_n(\zeta) = 0$,

(i') $q_n | \gamma_0 = p + k'_n$ (const.) and the normal derivative of q_n vanishes on δ_n . By the same way as above we obtain

$$(\ 3\)\quad D_{\scriptscriptstyle n}(q_{\scriptscriptstyle m}-q_{\scriptscriptstyle n}) \leqq b_{\scriptscriptstyle n}-b_{\scriptscriptstyle m} \ ext{where} \ b_{\scriptscriptstyle j} = \int_{\scriptscriptstyle \gamma_0} \!\! p^* dq_{\scriptscriptstyle j} + 2\pi k_{\scriptscriptstyle j}' \quad \ (j=n,m)$$

and

$$(4) D_n(p_n-q_n)=b_n-a_n.$$

From (2), (3) and (4) we see a_n is increasing and b_n is decresing as n increases and that $a_n \leq b_n$. Therefore $\lim_n a_n$ and $\lim_n b_n$ exist and are finite. In particular it follows from (2) that p_n converges uniformly to p on any compact K with $\overline{K} \subset \Omega_0$.

6. The following lemma is easy to see and plays an important role in the proof of our theorem.

LEMMA. Let $p \in F$. Then there exist an exhaustion $\{R_n\}_{n=0}^{\infty}$ and a sequence $\{p_n\}_{n=0}^{\infty}$ with $p_n \in H(R_n - \zeta)$ having the properties (h) of Lemma 5 and

(k)
$$p_n \mid \gamma_n = p + k_n$$
 (const.) and $p_n \mid \delta_{nj} = d_{nj}$ (const.) with

$$\int_{\delta_{n,i}}^* dp_n = 0 ,$$

(1) $\{p_n\}$ converges uniformly to p on any compact K in $R-\zeta$.

Since γ has zero capacity we can see that there exists an Evans potential e_0 for γ , i.e., a function $e_0 \in H(R-\zeta)$ satisfying the following conditions (Nakai [4]):

- (m) $e_0 \mid D = \log \mid z \zeta \mid + w(z)$ with $w \in H(\overline{D})$ and $w(\zeta) = 0$,
- (n) e_0 is of L_1 -type at δ ,
- (o) $\lim_{z\to\gamma}e_0(z)=+\infty$.

Needless to say $e_0 \in F$.

7. Proof of theorem. Consider $p_{\lambda} = \lambda e_0 + (1 - \lambda)q$ with a fixed $q \in F$ and $0 < \lambda < 1$. It is clear that $\lim_{z \to \gamma} p_{\lambda}(z) = + \infty$ and $p_{\lambda} \in F$. Therefore by Lemma 6 we obtain

$$\{p_{\lambda}\}_{0<\lambda<1}\subset C_{\gamma}.$$

On the other hand, obviously

$$(6) C_{r} \subset F.$$

Moreover observe that $\lambda \rightarrow p_{\lambda}$ is injective if $e_0 \neq q$.

By the approximation theorem of Heins [2], we can see at once that if $d_{\tau} = 1$, so is the cardinal number of F. It is trivial that the converse is valid. Hence $c_{\tau} = 1$ if and only if $d_{\tau} = 1$.

Suppose that $d_r \geq 2$. Then there exists a $q \in F$ with $q \neq e_0$. By the injectivity of $\lambda \to p_{\lambda}$, $\psi \leq c_r$. Conversely it follows from (6) that $c_r \leq$ the cardinal number of F which is not greater than ψ . Thus $c_r = \psi$. In either case, since $d_r \leq \psi$, we have $c_r = 1 + (d_r - 1)\psi$.

The author would like to express his warmest thanks to Professor Nakai for his kind guidance. He is also grateful for the valuable comments of the refree.

References

- 1. L. V. Ahlfors and L. Sario, *Riemann surfaces*, Princeton Univ. Press, Princeton, N. J., 1960.
- 2. M. Heins, A lemma on positive harmonic functions, Ann. of Math. 52 (1950), 568-573.
- Riemann surfaces of infinite genus, Ann. of Math. 55 (1952), 296-317.
- 4. M. Nakai, On Evans patential, Proc. Japan Acad. 38 (1962), 624-629.
- 5. L. Sario, A linear operator method on arbitrary Riemann surfaces, Trans. Amer. Math. Soc. 72 (1952), 281-295.
- 6. —, Capacity of the boundary and of a boundary component, Ann. of Math. 59 (1954), 135-144.
- 7. L. Sario and K. Noshiro, Value distribution theory, D. Van Nostrand, 1966.

Received October 2, 1967 and in revised form February 27, 1968. This is a part of the author's thesis for the partial satisfaction of the degree Master of Science at Nagoya University.

MATHEMATICAL INSTITUTE NAGOYA UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN Stanford University

Stanford, California

R. R PHELPS University of Washington Seattle, Washington 98105 J. Dugundji Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * *

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION

TRW SYSTEMS

NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 28, No. 1

March, 1969

Patrick Robert Ahern, On the geometry of the unit ball in the space of real annihilating measures			
Kirby Alan Baker, Equational classes of modular lattices			
E. F. Beckenbach and Gerald Andrew Hutchison, <i>Meromorphic minimal</i>			
surfaces	1		
Tae Ho Choe, <i>Intrinsic topologies in a topological lattice</i>	4		
John Bligh Conway, A theorem on sequential convergence of measures and some applications	5		
Roger Cuppens, On the decomposition of infinitely divisible probability laws			
without normal factor	6		
Lynn Harry Erbe, Nonoscillatory solutions of second order nonlinear			
differential equations	7		
Burton I. Fein, The Schur index for projective representations of finite			
groups	8		
Stanley P. Gudder, A note on proposition observables			
Kenneth Kapp, On Croisot's theory of decompositions	10		
Robert P. Kaufman, Gap series and an example to Malliavin's theorem	11		
E. J. McShane, Robert Breckenridge Warfield, Jr. and V. M. Warfield,			
Invariant extensions of linear functionals, with applications to			
measures and stochastic processes	12		
Marvin Victor Mielke, Rearrangement of spherical modifications	14		
Akio Osada, On unicity of capacity functions	15		
Donald Steven Passman, Some 5/2 transitive permutation groups	15		
Harold L. Peterson, Jr., Regular and irregular measures on groups and			
dyadic spaces	17		
Habib Salehi, On interpolation of q-variate stationary stochastic			
processes	18		
Michael Samuel Skaff, Vector valued Orlicz spaces generalized			
N-functions. I	19		
A. J. Ward, On H-equivalence of uniformities. II	20		
Thomas Paul Whaley, Algebras satisfying the descending chain condition			
for subalgebras	21		
G. K. White, On subgroups of fixed index	22		
Martin Michael Zuckerman, A unifying condition for implications among			
the axioms of choice for finite sets	23		