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If ke o, where .2 is a subgroup of a group .5, then
closure implies k2, k3, ---,€ .2 . Nonempty subsets Sc.¢”
with the inverse property s”c S implies s, g%, ---, 8¢S (m =
1,2, --+) will be called stellar sets. Let p® be a fixed prime
power, If a stellar set S of an abelian group . intersects
every subgroup 7~ of index p* in .2, and 0€ S, themn the
cardinal | S| of S is bounded below by p* (Theorem 3), when
S satisfies a mild condition,

Hence for instance a subset S of euclidean n-space E, intersecting
all sublattices of determinant p* of the fundamental lattice will have
at least p* elements, and more if no element is divisible by p°.

Henceforth & will always be an additive abelian group, so a
stellar set will be one with

o+ Sc.

1
(1) mgeS=g,2¢,---,mgeS(ge &, m=1,2 -..),

Examples of stellar sets are .&7 itself, and its periodic part [5, p. 187};
and a star set [7] is a symmetric stellar set. There are stellar sets
of one element s, i.e., those s for which s = mg(m = 1, 2, -..) implies
m = 1. Now let p be a fixed prime, and suppose S intersects every
subgroup .2 of & of index p. Suppose also

(2) 0¢S

(if 0 € S the intersection property is redundant). Then we can say
the following (in this paper we denote |A| = cardinal of A4, mA =
{ma; a € A}, for any set A and integer m):

THEOREM 1. Let p be a fived prime, &7 an abelian group, and
S a stellar set with 0¢ S which intersects all subgroups 57 of index
2 27 =p. Then

(3) ISi=zp.
When SN 9 = @ we have | S| > p.

A similar result holds for ordinary sets T

THEOREM 2. Suppose p is a fived prime, & is an abelian group
with more than one subgroup of indexr », and T is any subset of
& with
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(4) Tnps =@
which intersects all subgroups .57 of index & : 5% = p. Then
(5) Tlzp+1.

When & is the fundamental lattice 4, [2, 4] in r-space E, of
all points with integral coordinates, Theorems 1 and 2 are immediate
using Rogers’ proof of his Theorem 1 [7] on starsets, the small adjust-
ment needed being clear. He states his theorem with a slightly stronger
hypothesis equivalent to “S intersects all subgroups of index < p”, and
for this more stringent requirement Cassels [3], replacing p by =, has
made elegant use of a generalization of Bertrand’s postulate due to
Sylvester [9] and Schur [8] to show |S|=n for n = 1,2, --- and any
stellar set S of an abelian & with no periodic part. For n = p* a
prime power we shall extend this as follows:

THEOREM 3. Suppose that n = p* is fixed, &7 is an abelian group
containing no element of order p* when 1 < p? < p*, and that S is a
stellar set with 0¢ S which intersects all subgroups 2% of index
1 2 = p°. Then

(6) S| = »~.
When SN p*& = @, we have
p ifa>1,
> o
ISl=p +{1 ifa=1.

Note the requirement “contains at least one subgroup of index p*”
is a natural one, but it is an unneeded restriction on S. Note also
that Theorem 1 is an immediate consequence of Theorem 3.

2. A lemma. We find it useful, for Rogers’ case .&¥ = 4,C E",
to restate Theorem 3 in altered form. We denote & = (x,, -+, %,) SO
that

A, = {Z: all the x; are integers, 7=1, -+« 7},

and .&¥ = 4, is isomorphic to a direct sum of » infinite cyclic groups.
When % € 4, we define p|Z to mean p|z, ---, p|x,, and

llz|l, = max {a: p*|T} .
Let T be any subset of 4, satisfying
(7) »4NT=0g (Tcd),

and a modified stellar condition
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(8) {p% e T implies Z,2%, ---,pxeT

1=B8=a,p fixed),
and consider congruences

(9) Z'@:llfm‘*‘"‘+l‘rxr50(pa)(z‘e/10,p’l/_[)-

LEmMMma. If Tc A, satisfies (7) and (8), r = 2 and the congru-
ence (9) has for each | a solution Te T, then T contains at least
Ppe 4 printed=t distinet elements mod p*,

p ifa>1,

10 T mod p«| = p*
(10) l mopl_p+{1ifa:1-

Proof. We consider two cases, i) o = lorr < a, and (ii) r > a = 2.
For the first case, a simple counting argument will suffice. Define

(=) (a—1)f i __
0(i, a) = 2 =1

) Py

Then there are exactly
k=r
}r;p(a—l)(k—l)+a(r~lc) — 0(/'.’ a)

distinet congruences (9), representable by
Z = (pmly Sty pmk—«ly 1y lk+1, R} lr) .

If ¥ = bZ mod p~ then clearly 7 satisfies every congruence Z does,
and hence we may construct a subset V of T which likewise satisfies
every congruence (9), and also

ZeV,geV,y=bFmodp* =% =%,

12
(12) ZeV =72 satisfies some congruence (9) .

Any Z ¢V may be expressed as

T=2p(ptz0=¢ =7, <a
by (7), since VC T. A fixed e V obeys (9) for at least one I and
in fact for precisely those [ satisfying [ . %’ = 0(p**); these cor-

respond to exactly p*6(r — 1, &) congruences (consider, e.g., 7' = (1,
0, ---,0)). Hence, counting over the 4(r, a) congruences (9), we get

13) 6(r,a) = 3, p""'0(r — 1, a) .

zeV

Now Z e V obeys (8), since V< T. Hence to each Z = Z'p* in V there
correspond p° elements
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(14) I'Zy={\@":x=1, .., 05T xreV).
Moreover,
(15) T, = T, implies T(Z)N T(F) = @ (%, T, e V),

for otherwise MZ, = Ny, My = A% (p ¥ A}), without loss of generality
6 = 01 - 51 - ('92 - 52) = 0; and N;/—xz - ?"ipoflv fz = (Ké)_lk;pl)xl mod pn’
Z, = %, by (12). Thus by (13), (15),

T =z X p'"' = 0(r, 0)/0(r — 1, )

= p + ——-——pp:_(f’_“ 11) . rz2)

If a=1wehave |T|Zp+ @@ —-D">p, s |T| =p+1;if
r < a>1 then

| T —p"Zp(p— D@ —-1D">p—-1,

|T| — p* = p, and case (i) is verified.
For our second case » >« = 2 we employ induction on ». Let
r =4, define VT as in case (i), and denote

(16) r = (xly ey Ty xj) = (5’}_0, xj) .
There are p*~* + --- +p + 1= p* + p + 1 subgroups
Ha@)={Nmodp:x=1, -+, p =0}

(@ fixed, pta’), any two of which intersect in a point z divisible
by ». So if V contains a primitive (p + %) point from each subgroup,
we have |V|=p*+ p + 1 and our result follows. Hence we may
assume that V does not intersect some H(@’'), where without loss of
generality @ = (0, ---,0,1); then V contains no point of type % =
MPY,, 1) mod p when p t A, and hence by (8) no such point for any
A = ]_, 2, .-,

(17 TeV==1=pF,v). @I50=6<aq).
Now define sets T(Z) as in (14) and denote their union by W,
W= U{T@) :ZeV},

so that Vc Wc S, and W is the (smallest) set generated by V which
satisfies the modified stellar condition (8). Denote

(18) W, = {Z%,:(Z,, x;) ¢ W for some z;}.

Then by (17), (18), points Zip*(p 4 Z) of W, correspond to points
p4(Z}, x;) of W and so clearly W, satisfies (7) and (8). But V and
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hence W satisﬁes every congruence I in (9); thus W and hence W,
satisfies every ! with [; = 0 for some Z, = (x,, ---, @;_,) € W, such that

L, + ««- +lj._1xj.—1 = 0(p") (lu Sty lj—n p) = 1.

Thus by our induction hypothesis (r = 7 — 1, @ = 2) there are at least
p* + p such z,e¢ W,, and

ISz Wiz IWlzp +p.

As our result is already established for » = «a (case (i)), this com-
pletes the proof of the lemma.

3. Proof of Theorems 2 and 3. Consider the homomorphism 7:
(19) o = S pr S

(cf. Cassels [3] for his case s = 1); for Theorem 2 we take a = 1.

We see easily that if .o7: 2%~ = p* then p*¢” < .2 and so there
is a one-to-one correspondence between all 2", 2%~ of index p* in
&, & respectively; and any subset V of .&¥ intersects all such .5~
if and only if V intersects all such %  (index p®). If V has the
stellar set property this may, however, be lost under . Since p*.&¥ =0
we have by a result of Priifer [1] that ©” is a direct sum of cyclic
groups C; of orders p* < p% in fact, 8; = a since in all our 3 theo-
rems .<“ has no element of order p’(0 < 8 < «) and hence pfic;, =0
implies 8; = a. Thus

(20) T = 32 CAC; = <e: pie = 0)) .

iel
Note that all se S have infinite period,
(21 ms # 0 (seS,m==x1,+2, .--)

since otherwise [m|s =0, s = (Im| + 1)seS so 0 = |m|se S contrary
to (2). Now suppose 0 S. Then p*ge S sog,2¢g, ---,p9¢€ S, |S|= p°
since otherwise g = jg(¢ < j) and ge S has finite period. It remains

therefore to settle the matter when
(22) 0¢S (.., SNpor = 2).

The cases |I] = 0,1 in (20) correspond to groups .&° with no, exactly
one subgroup of index p®. In the latter event we have 0e S, a case
already settled. If |I| = 0 in Theorem 3 then .&¥ = p~.<” and all stellar
sets S vacuously satisfy the intersection condition. No stellar set is
empty, so we have se S, s = p%,, s, = p°s,, -+, and | S| = o« since
otherwise s; = s; (¢ < j) and s; € S has finite period, contrary to (21).
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The case |I| < 1 does not occur for Theorem 2, since here . has > 2
subgroups of index p*. Hence we may assume

(23) Iz 2.

From (23) it is immediate that & contains more than one subgroup
of index p*. We consider only Theorem 3 from now on; Theorem 2
will follow by the same reasoning (a = 1).

It remains, then, to verify Theorem 8 when (22), (23) hold. As-
sume now then

(24) |S] < o,

since if |S| = « we have nothing to prove. Then if we decompose
5§ =3, in (20) we have s; = 0 for some 5e S for only a finite number
of ¢ e I, which we may include in a finiteset 1 =1, ---,7 (2= 7 < |I)).
Then

Sc.o© = A, mod p* (in j-space E¥), 2=,

P = FO | .o,
and we may represent any % €.’ uniquely by
ZT=2a%+a* =@, -, x; x*) mod p* .

The following subgroups % have index p* in & and hence are in-
tersected by S:

%7 = {E: llxx + e+ ljxj = O(pa)} (lu Tty er p) =1 ’
where (I;, p) = 1 for some i and I, ---,1; are fixed for each .5 (cf.
[3, preceding (10)]); we have p } I, for at least one 7 and so for each

Te. 9, &= —3,. 70z, Hence | 5| = p*i?,
y:%:% :%Ozp“j/pa(j—l):pa.

Elements 5 of S are of type 5§ = (s, -+ -, 5;; 0%); since S is a stellar
set the modified property (8) holds for 7' = S; also, 0 = (0, - -+, 0, 0%) ¢S
and » = j = 2 by (22), (23). So we may apply the lemma to find there
are at least p* + p™™«»-! distinet points (s, -+, s;, 0*) in S; hence

1812 18] 2 pr + prives

and our proof of Theorems 2, 3 is complete.

4. Remarks. 1. In our proof of Theorem 3 we utilize the
stellar property of S only through its consequence in S, a condition

of type (8) with T =S which would clearly follow from imposing
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condition (8) on S, along with S ¢. Hence we may make the
following extension:

THEOREM 4. Theorem 3 holds for S mnot a stellar set, if S
satisfies ) (T=Sc v, Te.v”), and S = .

2. When .¢” is not abelian, Theorems 1-4 need not hold; e.g.,
the direct sum . = C= @ A, of the infinite cyclic group and alternat-
ing group of 60 elements has only one subgroup of index 3, % =
3C~ P A,, and %" is intersected by the stellar set of one element,

S = {3 + cycle (123)} = 3¢ .

3. In the excluded case 0€ S the least stellar set containing 0
is the periodic part of <7, and | S} = p need not follow.

4, When &7 = A(r = 2), the set of all (1, x,, 0, ---, 0), (pz, 1,0,
<o+, 0)mod p~ is a stellar set of p* 4 p*' elements intersecting all
congruences (9) mod p*. So our bounds are best possible, for the
lemma, when o =1, 2. (r = 2).

5. In Theorem 3 we must exclude elements of order (8 < a).
For consider ,e.g., .&” = C~PH C* (any «). Here the bound is p* + 1.

6. Let ¢ =2, S be a stellar set in FKuclidean n-space {Z =
(x, »--,2,)} with fewer than p* + p elements, and no element p*Z.
Then there is a sublattice of the fundamental lattice of determinant
p~ (see |2], p. 10) which is not intersected by S.

7. Our condition (A4)”S intersects all subgroups of index =’ is
equivalent to (B)" ... index d:d|n” though weaker than (C)" --.
index m: m < n”. The latter remark follows from the example S =
{4,D, 2,1), (2,0), (1,0)} in .&¥ =C~PC® (n =4). For the former
prove first for d = n/p and then iterate: if & : %" = n/p (p|n) and
(A) holds then o7~ = po#”, there exist _# in o7 with 57 : 2 =p
g0 & .4 =n, Z NS+ Q.

8. Theorem 3 does not hold for all n =1,2 .--. Mr. George
M. Bergman of Cambridge, Mass. has kindly furnished me with a set
of counterexamples for .&” = C* P C=, which includes a stellar set S
of 76 elements that intersects every subgroup of index 77.

9. Finally, we should like to acknowledge here some parallel
though independent work of Mr. Bergman who in unpublished cor-
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respondence proves a simpler version of Theorem 4, obtaining a slightly
lower bound (p* rather than p* + p, 1). His proof is in essence similar
to ours, except there is no induction step: a homomorphism 7 (19)
reduces the problem to Rogers’ case . = 4,, and a version of our
lemma is proved by arguments resembling ours for ¢ = 1 or » = «,
Mr. Bergman in effect considering congruences (9) with [, =1 to ob-
tain his bound p® for (10) for all », @, without induction. We thank
Mr, Bergman for the material communicated; among other things it
helped remind us to include Theorem 4. We thank him also for wel-
come suggestions concerning our final draft.
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