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Important classes of topological spaces have topologies
which are induced by a generating collection of closed subsets;
typical examples are /c-spaces, sequential spaces with unique
sequential limits, and lattices with the Birkhoff interval topo-
logy. This paper proceeds by axiomatizing this construction
—a set with a specified generating collection of closed subsets
is called a "hypotopological space." The Birkhoff interval
topology is then studied in these terms. A natural embed-
ding of hypotopological spaces in conditionally complete, ato-
mic, distributive lattices with Birkhoff interval topology is
derived. This embedding is used to show that lattices with
Birkhoff interval topology have the same nontrivial subspace
and product properties as Λ -spaces and sequential spaces. In
particular, we answer in the negative a question first raised
by Birkhoff, namely, whether the Birkhoff interval topology
is preserved under the formation of the product of two lat-
tices.

The Birkhoff interval topology was defined in [5]. It is one of
the most natural of the various topologies which have been proposed
for lattices, and yet is one of the least amenable to explicit calcula-
tion. Certain cases have proven tractable: For partially ordered sets
with universal bounds (0 and 1), the Birkhoff interval topology coin-
cides with the Frink interval topology [15], under which the closed
intervals form a subbase for the closed sets. In general, however, it
is difficult to determine the closure of a given subset of a lattice with
respect to this topology. It is for this reason that several basic ques-
tions regarding subspaces and products have proven elusive for the
Birkhoff interval topology.

Subspace and product properties of fc-spaces and sequential spaces
have been studied by Franklin [12, 13], Cohen [9], Dowker [10], Dudley
[11], Michael [19, 20], and others. Birkhoff noted that a conditionally
complete lattice is itself a A -space under his interval topology [5, Th.
3]. For the Birkhoff interval topology, products of chains were studi-
ed by Alo and Frink [1]. In particular, they answered Birkhoff's
question in the infinite case by showing that the Birkhoff interval to-
pology is not preserved under infinite products of chains. The example
derived in the present paper answers BirkhofΓs question for the finite
case (see Corollary 6.8 below).
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2* Hypotopological spaces*

DEFINITION 2.1. A hypotopological space X is a set X together
with a specified collection Sf(X) of subsets of X satisfying

(Al) 0 e J^(X),
(A2) if d , C2 6 J^T(X) then d U C2 e ^ ( X ) ,
(A3) if {Ca} is a nonempty family of elements of J%Γ(X), then

(A4) JT(X) is a covering of X

We shall call St~(X) a hypotopology on X. The terminology is
motivated by the observation that J%Γ(X) would be a (closed set) to-
pology on X in the presence of the additional condition l e J Γ ( J ) .

If X is a hypotopological space, let ^Γ(X): J%Γ(X) denote { 7 g
X: VnCeST(X) for all CeJΓ(Z)} . (The notation is that of re-
siduation in lattices [5, p. 327].) Then SΓ(X): 3ίT(X) is a (closed set)
topology on X, called the topology induced by the hypotopology J3f(X).
Since for each C e SΓ(X) the intersections with C of elements of
J%Γ(X) form a (closed set) topology on C, the induced topology on X
is an instance of a topology generated by a collection of subspaces
([18, App. D), [8, p. 615], [7, p. 33]); it is the strongest topology on X
which agrees with the topology of each C G J Γ ( I ) . (Whitehead, in
a different terminology, would call such a topology "weak" [21, § 5].)

Following Birkhoff [5], we shall refer to the elements of ^Γ(X):
as closed subsets of X and to any subset of an element of
as a bounded subset of X. The closed bounded subsets of X

are then precisely the elements of J%Γ(X). Complements of closed
sets will be called "open," as usual.

If X is a hypotopological space, the induced topology on X can
be obtained by representing X as a quotient [7, p. 40] of the disjoint
union X' of the sets CeJ%~(X), each regarded as a topological space.
Here the quotient map μx\Xτ —>X is the unique map which restricts
to the identity on each CeJ?Γ(X). Following [4], we shall call μx

the canonical presentation of X (under the induced topology) as a
quotient.

REMARK. The bounded subsets of X form a "boundedness [system]"
in the sense of Hu [16, p. 184], Conversely, if a boundedness on a
topological space X is such that one-point subsets are bounded and
closures of bounded sets are bounded, then the closed bounded sets
constitute a hypotopology on X with the same definition of "bounded".

EXAMPLE 1. Let ω + 1 be the second infinite ordinal, with the
order topology. If X is a topological space, then intersections of finite



HYPOTOPOLOGICAL SPACES AND THEIR EMBEDDINGS 277

unions of subspaces of X homeomorphic to ω + 1 form a hypotopology
on X, the sequential hypotopology. X is a sequential topological space
with unique sequential limits if and only if the induced topology is
the original topology on X [12, Proposition 1.1, p. 108].

EXAMPLE 2. If X is a topological space, then the closed compact
subsets of X form a hypotopology on X which we shall call the full
k-hypotopology. X is a A -space if and only if the induced topology is
the original topology on X [17, p. 230], If X is a complete uniform
space which is a Λ-space (e.g., if X is a complete metric space), then
the bounded subsets of X are those which are totally bounded in the
sense of uniform spaces [17, p. 198].

More generally, if X is any hypotopological space for which all
C e J3f~(X) are compact, then X is a λ -space under the induced to-
pology, and we shall call ^Γ{X) a k-hypotopology on X.

EXAMPLE 3. If X is a partially ordered set, let JίΓ(X) be the
hypotopology on X consisting of all intersections of finite unions of in-
tervals [α, b] = {x e X: a ^ x ^ 6}. JsΓ{X) will be called the interval
hypotopology on X. The induced topology is the Birkhoff interval to-
pology on X [5]. If X is bidirected (i.e., if X and its dual are directed),
then the bounded subsets of X are those which are bounded above
and below in the sense of partial order.

Finally, any topological space X can be regarded as a hypoto-
pological space, with SΓ{X) being the collection of closed subsets of X.

Most elementary definitions and constructions for topological spaces,
when phrased in terms of closed sets, have natural generalizations to
hypotopological spaces:

If X is a hypotopological space, a collection & of subsets of X
is subbase for J2Γ(X) if SΓ{X) is the smallest hypotopology on X
which contains &;^Γ{X) can be obtained as the collection of arbi-
trary intersections of finite unions of elements of £%?. (Here and else-
where the phrase "arbitrary intersection" should be interpreted to
exclude the intersection of no sets.) Thus intervals [α, b] are a sub-
base for the interval hypotopology.

If SgΞX, the relative hypotopology J%Γ(S) on S is given by

JT(S) = {Sf)C: Ce ST(X)} .

If S is bounded, SΓ(S) is thus a (closed-set) topology on S. If {Xα,
a e A} is a family of hypotopological spaces, their disjoint sum ^aXa

has the hypotopology with subbase \Ja Sί^{Xa) (where the Xa are re-
garded as disjoint). The direct product Πa Xa has the hypotopology de-
termined by the subbase consisting of "boxes" Ha Ca, where Ca e
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for all a.
Homeomorphisms and embeddings of hypotopological spaces are

defined in the obvious way. More generally, a morphism f: X —> Y
of hypotopological spaces is a function / which is continuous with re-
spect to the induced topologies on X and Y and which carries bound-
ed subsets of X into bounded subsets of Y. Hypotopological spaces
and their morphisms form a category in which direct products and
disjoint sums, as defined above, do correspond to direct products and
direct sums defined categorically [14, p. 76],

We shall say that a hypotopological space X is Hausdorff if the
induced topology is Hausdorff; a T1 hypotopological space is similarly
defined.

3* Subspaces of hypotopological spaces* It is well known that
subspaces of sequential topological spaces need not be sequential [12,
Example 1.8] and that subspaces of λ>spaces need not be fc-spaces [17,
p. 240], For hypotopological spaces in general the situation can be
analyzed as follows.

Let X be a hypotopological space, and let S be a subspace with
the relative hypotopology SΓ{S). Then there arise two conceivably
different topologies on S.

(1) the topology ST(S): ^Γ(S) induced by J3T(S);
(2) the relativization to S of the induced topology SΓ(X): J%T{X)

on X. Topology (1) is always at least as strong as topology (2).

DEFINITION 3.1. If topologies (1) and (2) are identical, we shall
say that S is a strong subspace of X.

The following fact is immediate from the definition of the quo-
tient map μx.

LEMMA 3.2. Let μx:X'—>X be the canonical presentation of X
(under its induced topology) as the quotient of a topological sum, and
let SQX. Then S is strong if and only if μx restricted to μx\S)
is a quotient map.

By means of this lemma, the following facts are readily verified.

THEOREM 3.3. Let X be a hypotopological space. Then
( i ) every closed subset of X is strong]
(ii) every open subset of X is strong)
(iii) every bounded subset of X is strong.

THEOREM 3.4. Let X be a hypotopological space, let ZQYQX,
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and let Z and Y have the relative hypotopologies. Then
( i ) (relative heredity) if Z is strong in X, then Z is strong

in Y;
(ii) (transitivity) if Z is strong in Y and Y is strong in X,

then Z is strong in X.

REMARK. If a subset S of a λ -space is itself a Λ-space, then it
is strong, but not conversely—a relatively closed bounded set may no
longer be compact. However, a subspace of a sequential space is
strong if and only if it is sequential. Theorem 3.3 therefore genera-
lizes Proposition 1.9 of [12], to the effect that closed subsets and open
subsets of sequential spaces are sequential.

In a number of important examples, the following theorems show
that all subsets are strong. A map /: Y—>Z of topological spaces is
pseudo-open if f(U) is a neighborhood of p e Z whenever U is a neigh-
borhood in Y of f~ι(p) [3, Definition 2].

THEOREM 3.5. Let X be a hypotopological space, let μx: Xr —> X
be the canonical presentation of X, and let cl and cV represent
topological closure in X and Xf respectively. Then the following are
equivalent.

( i ) All subspaces of X are strong.
(ii) μx is a pseudo-open map of topological spaces.
(iii) For any subset T of X, cl(Γ) = μx(cV(μγ(T))).
(iv) For any subset T of X, cl(Γ) = Uc cl (C Π T), where C

ranges over S

Proof. By Lemma 3.2, (i) is equivalent to the assertion that μx

is "hereditarily a quotient map" in the sense of ArhangePskii [3],
and hence is equivalent to (ii) by [3, Th. 1], (iii) is a rephrasing of
the definition of pseudo-openness in terms of closed sets. The equiva-
lence of (iii) and (iv) is immediate from the fact that closure in a dis-
joint sum is obtained as the union of closures in summands.

A topological space is a Frechet space if the closure of any sub-
set S consists of S together with the limits of convergent sequences
from S.

COROLLARY 3.6. [13, Proposition 7.2] If X is a sequential space
with unique sequential limits, then X is hereditarily sequential if
and only if X is a Frechet space.

A collection of subsets {Ca} of a topological space X is called an
interior cover of X if the interiors of the Ca cover X [8, p. 285].
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THEOREM 3.7. If X is a hypotopological space and J%Γ(X) is an
interior cover of X (where interiors are taken with respect to the
induced topology), then every subset of X is strong.

Proof. If 3ίΓ(X) is an interior cover, then the presentation map
μx is pseudo-open.

COROLLARY 3.8. Let X be a k-space with the full k-hypotopology.
If X is locally compact in the sense that every point has a closed
compact neighborhood, then every subset of X is strong.

COROLLARY 3.9. Let P be the lattice product of a finite number
of chains, with the interval hypotopology. Then every subset of P
is strong.

Proof. It is easily seen that if hypotopological spaces Xu ,
Xn have the property that S%Γ(XΪ) is an interior cover, then so does
Xι x x Xn. The intervals of a chain do form an interior cover,
and the product hypotopology on P is the interval hypotopology by
Lemma 6.3 below.

REMARK. Alo and Frink [1] have shown that the Birkhoίf interval
topology is preserved under finite lattice products of chains.

4* Chains in partially ordered sets. The main result of this
section is that chains in partially ordered sets are always strong.

If P is a partially ordered set and x e P, by the "rays" M(x) and
J(x) we shall mean M(x) ~ {y e P:y ^ x} and J(x) = {y e P:y ^ x).
M(x) is a closed subset under the Birkhoff interval topology, and
similarly for J(x).

LEMMA 4.1. Let S be a maximal chain in a partially ordered
set P. Then S is closed in P under the Birkhoff interval topology.

Proof. Since all sets M(x) and J(x) are closed, the set T =
Πxes (M(x) U J(x)) is closed. But ye T if and only if y is comparable
with every element of S. Since S is a maximal chain, T — S.

REMARK. The relativization to S of the Birkhoff interval topology
on P may be stronger than the intrinsic chain topology on S. For
example, let P be the reals with 0 replaced by two noncomparable
elements 0', 0". P has two maximal chains, each order-isomorphic to
the reals, and yet the infinite open interval (0', oo) = (0", oo) = [0', oo) n
[0", co) is a relatively closed subset of either chain.
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THEOREM 4.2. Let Pbe a partially ordered set under the interval
hypotopology. Then every chain S of P is a strong subset of P.

Proof. Extend S to a maximal chain T of P. By Lemma 4.1,
T is closed in P. Then by Theorems 3.3-(i) and 3.4-(ii), it suffices to
show that S is a strong subset of T with respect to the relative
hypotopology JT(T) on T. The topology ^T(T): ST(T) is at least
as strong as the intrinsic chain topology on T [6, p. 241], since the
intervals and rays of T which are subbasic closed sets for the latter
topology are also closed in the former. Therefore T retains the pro-
perty of a chain that its intervals form an interior cover, even when
interiors are taken with respect to 3r{T)\ SΓ(T). By Theorem 3.7,
every subset of T, in particular S, is strong.

5* Hypotopologies as lattices. Since chains are well-behaved
under the interval hypotopology, it is appropriate to examine next the
"horizontal" sets, i.e., sets consisting of pairwise noncomparable ele-
ments. In general, horizontal sets are not as tractable as chains. For
example, if R denotes the ordered set of real numbers, the Birkhoff
interval topology in R x R is the ordinary Euclidean topology, and
yet it is easy to find maximal horizontal sets which are not closed.
Furthermore, Corollary 5.9 will show that horizontal subsets need not
be strong with respect to the interval hypotopology, even for condi-
tionally complete lattices.

Nevertheless, certain horizontal sets in atomic lattices do turn
out to be strong (Theorem 5.5), and we shall use this fact to give
an embedding of hypotopological spaces into lattices.

Let X be a Tt hypotopological space. Then there is an obvious
lattice associated with X, namely Sί^(X) itself, ordered by set inclu-
sion. For clarity, we shall denote J3Γ(X) regarded as a lattice by
L(X), with lattice operations V, Λ. The element of L(X) correspond-
ing to a given CeST(X) will be denoted by C*. For peX, {p}*
will be abbreviated to p*, and fx: X-^L(X) will be the function given
by fx{p) — p*. L{X) is a conditionally complete atomic distributive
lattice with universal lower bound 0 = 0 * .

If V is any subset of X, let V{n) = {C* e L(X): card (C) = n) for
n — 0,1, 2, . Thus Xa) is the image of fXi i.e., the set of atoms
of L(X). Vin) is certainly horizontal, for all n.

The following observation is the reason for our construction of fx.

LEMMA 5.1. Let X be a Tt hypotopological space. Then fx:X—+
L(X) is an embedding with respect to the interval hypotopology on
L(X).
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Proof. For CeSΓ(X), the set image fz(C) is X(1) n [0, C*].
Thus the sets fx(C) constitute a subbase of fx{X) = Xa) in the rela-
tivized interval hypotopology SΓ(X(1)). (It is clear that a subbase
for ST(X{1)) consists of all sets of the form X(1) Π [D*, C*], but for
D* ^ 0 such a set has at most one element and is equal to 0 =
X(1) Π [0, 0] or to X{1) n [O, p*] for some peX.) It follows that for
C^XJx{C)eSr(X{l)) if and only if CeST(X). Thus / x is a hypo-
topological homeomorphism of X and X(1), i.e., an embedding of X
into L(X).

Our efforts will now be directed towards showing (Theorem 5.6)
that fx is an embedding under the induced topologies as well.

If Fis any closed subset of X, the relative hypotopology J%Γ(V)
is given by ST{V) = {CeJT(X):CQ F}; thus L(V) can be regarded
as a subset, in fact a lattice ideal, of L(X). If V is a closed bound-
ed subset of X, then L(V) = [0, F*].

LEMMA 5.2. .For αwt/ eίosecZ subset V of a ϊ\ hypotopological
space X, L(V) is closed in L(X) under the Birkhoff interval topology.

Proof. For any interval [C*, £>*] of L(X), [C*, Z>*] Π-L(F) =
[ C * , φ n F ) * ] .

LEMMA 5.3. If T is any Hausdorff topological space and plf ,
pn+1 are distinct points of T, there exist closed subsets Du , Dn+1

of T such that (a) p{ ί Di for all i, and (b) any subset of T of car-
dinality k ^ n is contained in Di for some i.

Proof. For each i < j, let Ei5 and Ei5 be disjoint open sets with
Pi 6 Eij9 Pj e Eji. For each i let Di be the complement in T of Π i ^ E%ι
Then (a) holds. For i Φ j, Di U Dό = T. Then if ζ) s T and card (Q) ^
n, each element of Q is contained in all except possibly one of the
(n + 1) sets D{. It follows that Q^Di for some i.

In view of the "vertical" nature of intervals used in defining the
Birkhoff interval topology, the following fact is striking.

LEMMA 5.4. Let X be a Hausdorff hypotopological space. Then
for every nonnegative integer n, X{0) U U Xin) is closed in the
Birkhoff interval topology on L(X).

Proof. Let S = X{0) U U X{n). S will be its own closure, i.e.,
closed, if we can show that for every C*eL(X) with C*^S there
exists a closed subset R of L(X) with SQR,C* &R. Such a C has
more than n elements; let Q^C have (n + 1) elements pίy , p

n+ί.
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Use Lemma 5.3 to choose corresponding closed sets Du , Dn+1 in X.
Let R = \JiL(Di). Then R is closed by Lemma 5.2. By (b) of Lemma
5.3, X{k)SR for k ^ n, so that S S # . But by (a), we have (for all
i) pteL(Di), hence Q*$L(Di), hence C*6l/(A), hence C*£#. Thus
i? has the required properties.

THEOREM 5.5. Let X be a Hausdorff hypotopological space. For
every nonnegative integer n, X{n) is a strong subset of L(X) with
respect to the interval hypotopology on L(X).

Proof. S = X(0) U U X{n) is closed in L(X) by Lemma 5.4,
hence is strong by Theorem 3.3 (i). But X(0) U U Xin~1} is also
closed in L(X), hence in S, and its complement X{n) in S is therefore
open in S. By Theorem 3.3 (ii), X{n) is strong in S, and by Theorem
3.4 (ii), Xin) is strong in L(X).

We shall be interested in Theorem 5.5 particularly for n = 1
and 2.

THEOREM 5.6. Let X be a Hausdorff hypotopological space. Then
f:X—>L(X) is simultaneously (1) a hypotopological embedding with
respect to the interval hypotopology on L(X); and (2) a topological
embedding with respect to the induced topology on X and the Birk-
hoff interval topology on L(X).

Proof. Lemma 5.1 shows that fx is a hypotopological embedding.
Hence fx is a topological homeomorphism of the induced topologies of
X and of fx{X) = X(1). By Theorem 5.5 for n = 1, the induced to-
pology on X{1) is the relativized Birkhoff interval topology.

COROLLARY 5.7. Any Hausdorff sequential topological space X
can be obtained by relativization from a conditionally complete lattice
with 0 under its Birkhoff interval topology, so that closed bounded
subsets of the lattice intersect X in convergent sequences.

COROLLARY 5.8. Any Hausdorff k-space X can be obtained by
relativization from a conditionally complete lattice with 0, under its
Birkhoff interval topology, so that closed bounded subsets of the lattice
intersect X in compact sets.

COROLLARY 5.9. There exist conditionally complete distributive
atomic lattices in which not every subset is strong with respect to
the interval hypotopology; in particular, a horizontal subset may not
be strong.
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Proof. Let X be a Hausdorff hypotopological space in which
not every subset is strong; for example, let X be a Hausdorff sequen-
tial space which has a nonsequential subspace [12, Example 1.8]. Con-
sider fx(S)SL(X), where S g X i s not strong. By Theorem 5.6, if
fx(S) were strong in L(X), then S would be strong in X, contrary
to assumption.

At this point, it is natural to ask which lattices M have the
form L(X) for some hypotopological space X. And for which of these
is 5ίΓ{X) a /c-hypotopology? This latter question has an unexpected
answer.

THEOREM 5.10. A lattice M has the form L(X) for some T1 hypo-
topological space X if and only if M is a conditionally complete,
atomic, distributive lattice. If so, J%Γ(X) is a k-hypotopology if and
only if X{ί) Q L(X) = M is closed in the topology of order convergence
in M.

Proof. If M is a conditionally complete, atomic distributive lat-
tice, let X be the set of atoms of M with hypotopology {X f] [0, m]:
meM}. Then M^L(X). The converse is obvious. All elements of

are compact if and only if every filter base B contained in
has a nonempty intersection [7, Definition 1 p. 93]. But a

filter base can be interpreted in L(X) as a downward-directed net
which is never 0, and which therefore dominates a net of Xa). From
the definition of order-convergence [6, p. 244], a net in X{1) therefore
can converge to 0 if and only if there exists a B with empty inter-
section. Since a net of atoms can order-converge only to an atom or
to 0, the second assertion of the theorem is proved.

6* Products of lattices* It is known that the product of two
A -spaces may not be a Λ-space [10, p. 563] and that the product of
two sequential spaces may fail to be sequential [12, Example 1.11],
More generally, let us say that a pair of hypotopological spaces, Y
and Z, is strongly productive if the topology on Y x Z induced by
the product hypotopology is the product of the induced topologies.
The following fact is immediate.

LEMMA 6.1. Two hypotopological spaces Y and Z are strongly
productive if and only if μγ x μz is a quotient map, where μγ: Y'—>
Y and μz: Z

f —»Z are the canonical presentations of Y and Z.

THEOREM 6.2. Let X be a Hausdorff hypotopological space. Then
the following conditions are equivalent.

( i ) For all Hausdorff topological spaces Z, X and Z are strongly
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productive (where Z is regarded as a hypotopological space).
(ii) μx is a bi-quotient map [20]; i.e., if {Ua} is an open cover

of μ~χ\p) (peX) then for some finite set of indices ac(ϊ), «
the sets f(Ua{i)) cover a neighborhood of p.

(iii) <5f(X) is an interior cover of X.

Proof, (i) <=> (ii). By Lemma 6.1, (i) is equivalent to the asser-
tion that μx x μz is a quotient map for any Hausdorff topological
space Z. Theorem 1.3 of [20] states that (ii) is equivalent to the
assertion that μx x iz is a quotient map for any such Z, where iz is
the identity map on Z. It will therefore be sufficient to prove: (*)
For any topological space Z, μx x μz is a quotient map if and only
if μx x iz is a quotient map. Accordingly, let such a Z be given.
Since Ze^έT{Z), Z itself is a disjoint summand of Z'\ let j : Z-+Z'
be the corresponding embedding. Note that μx x μz = (μx x iz)o
(ix, x μz) and μx x iz — (μx x μz)°(ix> x i). Since the composition
of two maps is a quotient map only if the left-hand factor is a quo-
tient map, the assertion (*) is verified.

(ii) => (iii). Let peX. The various Ce J3Γ{X), regarded as sum-
mands of X', together form an open cover of μ~γ{p). By (ii), there
exist Cl9 , Cn e J%Γ(X) such that the μz(d) cover a neighborhood
of p (taken with respect to the induced topology on X). But μx on
d is just the embedding of d in X. Thus Co = d U U Cn is a
neighborhood of p, and we have CQ e ^Γ(JSΓ), p e intxC0.

(iii) =>(ii). Let peX, and choose Coe^(X) with pGintxC0. If
{£7α} is an open cover of μx

ι{p), then for some a, Ua contains the
singleton set μx\p) Π COf where Co is now regarded as a summand of
X'. μx(Ua) contains the open neighborhood μx(Ua Π int XCQ) of p,
hence is itself a neighborhood of p.

The proof of Theorem 6.2 is thus complete.
A Hausdorff sequential space X satisfies condition 6.2 (iii) if and

only if each peX has a compact neighborhood consisting of p and
at most a countable number of isolated points. A Hausdorff fc-space
X with a fc-hypotopology satisfies condition 6.2 (iii) if and only if X
is locally compact and the hypotopology is the full λ -hypotopology.
Thus for many hypotopological spaces X, including the reals with the
sequential hypotopology, there exist hypotopological spaces Z which
are actually topological, such that X and Z are not strongly produc-
tive.

In the case of lattices X under the interval hypotopology, however,
Theorem 6.2 does not say when lattices Z are strongly productive
with X. (And lattices X are not usually Hausdorff.) It is this type
of question which a study of embeddings will help to answer (Theorem
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6.6). Alo and Frink [1, Th. 9, p. 1012] have shown that the Birkhoff
interval topology is preserved at least for finite products of chains.
For the interval hypotopology in place of the Birkhoff interval topology,
there is no problem:

LEMMA 6.3. If P and Q are partially ordered sets, then the in-
terval hypotopology on P x Q is the product of the interval hypoto-
pologies of P and Q.

Proof. The intervals of P x Q are precisely the products of in-
tervals of P with intervals of Q.

LEMMA 6.4. Let Y and Z be Hausdorff hypotopological spaces.
Then Yα) x Z{1) is a strong subset of the lattice product L(Y) x L(Z),
with respect to the interval hypotopology on the product.

Proof. Let X be the hypotopological disjoint sum Y + Z. Then
L(Y) x L(Z) is lattice-isomorphic to L(X). Under this isomorphism,
the subset X{2) of L(X) corresponds to the subset

S = (Yi0) x Z { 2 ) ) U (Y{]) x Z{1>) U (Y{2) x Z ^ )

of L(Y) x L(Z). Since X{2) is strong in L(X) by Theorem 5.5, S is
strong in L(Y) x L(Z). Now observe that Y{1) x Z{1) = S ΓΊ T, where

T= (Y{0} U Y{ί}) x (Z{0) U Z{1))

in L(Y) x L(Z). By Lemma 5.4, F ( 0 ) U Y{1) and ZiQ) U Z(1) are closed
in L(Y) and L(Z) respectively. Since the induced topology on the
product of hypotopological spaces is always at least as strong as the
product of the induced topologies, T is closed in L(Y) x L(Z) with
respect to the product hypotopology, which is the interval hypoto-
pology by Lemma 6.3. Then Y{1) x Z{1) = S Π T is relatively closed
in the strong set S, hence is strong in L(Y) x L(Z), by Theorems
3.3 (i) and 3.4 (ii).

LEMMA 6.5. Let Y and Z be Hausdorff hypotopological spaces.
Then fγ x fz: Y x Z—* L(Y) x L(Z) is an embedding of hypotopologi-
cal spaces with respect to the interval hypotopology on L(Y) x L(Z).

Proof. It is easily verified that the product of two embeddings
of hypotopological spaces is again an embedding. Lemma 6.3 shows
that L{Y) x L(Z) can be regarded as having the interval hypotopology.

THEOREM 6.6. Let Y and Z be Hausdorff hypotopological spaces.
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Then fγ x fz: Y x Z~>L(Y) x L(Z) is a topological embedding simul-
taneously for

(1) the product of the induced topologies on Y and Z, and the
product of the Birkhoff interval topologies on L(Y) and L(Z); and

( 2) the topology on Y x Z induced by the product hypotopology,
and the Birkhoff interval topology on L(Y) x L(Z).

Proof. fγ and fz are topological embeddings (Theorem 5.6), and
a product of topological embeddings is again an embedding. Thus (1)
holds. Lemma 6.5 shows that fγ x fz is a hypotopological embedding,
and since its image Y{1) x Z{1) is strong in L(Y) x L(Z) (Lemma 6.4),
fτ x fz carries the induced topology of Y x Z to the relativized Birk-
hoff interval topology on Γ(1) x Zw. Thus (2) holds.

COROLLARY 6.7. If Y and Z are Hausdorff hypotopological spaces
which are not strongly productive, then L(Y) and L(Z) are not strong-
ly productive for the interval hypotopology, i.e., the Birkhoff inter-
val topology on L(Y) x L(Z) is not the topological product of the
Birkhoff interval topologies of L(Y) and L(Z).

COROLLARY 6.8. There exists a conditionally complete, distribu-
tive, atomic lattice M such that the Birkhoff interval topology on
M x M is not the product of the Birkhoff interval topology on M
with itself.

Proof. Let M = L(X), where X is a Hausdorff &-space for which
X x X is not a &-space, and where X is given the full /b-hypotopology.
Then Corollary 6.7 applies. (For example, let X be the reals under
the half-open-interval topology [17, p. 59].)

It might be conjectured that if one of a pair of lattices is com-
plete, then the pair is strongly productive. For, a complete lattice is
compact in the Birkhoff interval topology [5, Th. 3], and compact
spaces are well-behaved under products in the case of Hausdorff spaces
[19, Th. 3.1], The following fact provides a wide class of counter-
examples to such a conjecture.

COROLLARY 6.9. Let X be a Hausdorff hypotopological space for
which 3ίΓ(X) is not an interior cover of X. Then there exists a com-
plete lattice M such that the Birkhoff interval topology on L(X) x M
is not the topological product of the Birkhoff interval topologies on
L(X) and M.

Proof. By Theorem 6.2 there exists a hypotopological space Z
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which is actually topological, such that X and Z are not a strongly
productive pair. Let M = L(Z) and use Corollary 6.7. M is a com-
plete lattice.
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