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Let D be a bounded open subset of the complex plane
which is the interior of its closure, and let » be a bounded
analytic function on D, The classical theorem of Runge
implies that there is a sequence of rational functions with
poles in the complement of the closure of D which converges
to 7 uniformly on compact subsets of D, The question naturally
arises as whether this sequence may be chosen so that the
supremum norms over D of the rational functions remain
uniformly bounded. Of course, if the boundary of D consists
of a finite number of disjoint circles (that is, D is a circle
domain), then it is a classical result that the approximating
sequence may be chosen so that their norms do not exceed the
norm of h, But suppose that the boundary of D is quite
complicated or D has infinitely many components in its com-
plement. This general question has been the subject of several
recent papers and is the subject of this one,

In [4] Rubel and Shields showed that if the complement of the
closure of D is connected, then there is a sequence {&,} of polynomials
with ||, ]| £ || k]| and h,(2) — h(z) for each z in D. Ahern and Sara-
son extended this result in [2] and proved that if a bounded open set
D is the interior of its closure and has only finitely many components
in its complement, then such bounded pointwise approximation is al-
ways possible, where the approximating functions have poles in the
(finitely many) components of the complement of the closure of D,
and their norms on D do not exceed the norm of the limit function.

The chief results in this paper show that rather elementary
techniques may be used to extend the theorems of Rubel-Shields and
'Ahern-Sarason to certain domains with infinitely many complementary
components.

We first introduct some notation to be used throughout the re-
mainder of the paper: U is the open unit dise, {z||z| < 1}; I" is the
unit circle, {z]|z| = 1}; if D is an open set, H*(D) is the space of
bounded analytic functions on D and D denotes the closure of D; if
K is a compact set, then R(K) is the uniform closure on K of the
rational functions with poles off K; finally, S denotes the boundary
of S.

THEOREM 1. Let S, S,, --+ be a sequence of disjoint closed discs
in the open unit disc U which are centered on the positive real axis
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and whose centers, ¢,, and radii, r,, decrease to 0. Suppose that
there is a constant 6 > 1 such that (c, — 7,) = 0(Cpry + Tury) Sfor all
n. Let D be the domain U — {0} U [Ux. Sil. If fe H=(D), then there
is a sequence {f.} of rational fumctions with poles off D such that
£l < 13/6 = Y| £ || and f.(2) — f(2) for each z in D,

Proof. Let v, be the circle of radius ¢, + r, about 0 and let
D,=U—-S8U-+-US,;.. For zin D, define

=0 27% w— 2z

fw =5 L) gy

where I, is the unit circle, I"; = d8S; for 1 <+ <n — 1 and the f*
on 6D, is the usual boundary-value function of f. For z near oD,
we have

) = £u0) + 5 | L) aw,
2wt e W — 2

by Cauchy’s formula. Thus, for z near oD,

lfn(z>1§|f<z>|+|271zi§ f(w) dwl

Tn W— 2
and hence
1 e, ke, )
A R e g eyl EZ B4 P

as desired. It is immediate that f,() — f(2) for each z in D since
¢, + r,— 0 ag n— oo; thus f, — f uniformly on compact subsets of
D. Since D, is a circle domain, the f,’s may be replaced by rational
functions with poles off D without increasing the estimate on the
norms and without affecting the uniform convergence on compact

subsets.

THEOREM 2. Let I be an arbitrary closed subset of the interval
[—%, £] of zero arc length. Let {c;} be a countable set of distinct points
wn the unit disc with Ime; == 0 such that I is precisely the set of
accumulation points of {c;}. Let S; be a closed disc in U — I center-
ed at ¢; of radius r; where the radii are chosen so small that (a)
SinNS; =@ for i+37 and (b) 32, 7:/d; = C < o where d; is the dis-
tance from the i'* disc to the mearest (other) disc. Let D = U —
IU Uz S.. If fe H*(D), then there is a sequence {f,} of elements
of R(D) such that || f,|| < (C + V|| fil and f.(z) — f(z) for each z in
D.
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Proof. Let E,=U— S,U---US, and for z in E, define

fn(z):_lfgmvldwi 1.5 F*) qw
2 Jr w — % i=t 2wy Jes; w — 2

where the f* in the integrand is the usual boundary-value function
for f. Cauchy’s formula holds in D in the following form

) = | T aw s 5L LW g

2wy Jr w — 2 i=1 271 w— 2z

for each z in D. This is easily proved in the following manner. For
each positive integer 7 choose a finite number of open discs whose
union, U,, contains I and the sum of whose radii is less than ™.
This is possible since I has zero linear measure. Let D, = D — U,.
Then the boundary of D, is rectifiable and consists of a finite number
of piecewise smooth curves. If v, denotes the boundary of U,, and
X, the intersection of 0D, with 6D, we have by Cauchy’s formula

1 F*(w) 1 J(w)
f@) = 211 an w— z dw + 2w Sr% w— 2 dw .

The second integral is bounded by C || f|l. %~ where C is a constant
depending only on the distance between z and U,. The first integral
differs from the integral in (*) by less than a constant times the
tail of the convergent series >, 7;/d;. Letting n approach infinity
we obtain the desired conclusion. From this form of Cauchy’s formula
estimates like those in Theorem 1 show that [|f, || =< (1 + C) || f|| and
that f,(z) — f(z) for each z in D. Use the fact that E, is a circle
domain to replace the f,’s by elements of R(D).

A COUNTER-EXAMPLE. Bounded approximation of H* functions by
rational functions is not possible if the set I of accumulation points
of the complementary components is “too” big, no matter how nice
these components are,

Let I be an arbitrary closed subset of [—1%, ] of positive arc-
length and let {S;} be a sequence of disjoint closed discs in U — I,
the sum of whose radii is finite, which collect at each point of I and
only there. Then there are bounded analytic functions on D = U —
IU Uz, S; which cannot be approximated pointwise on D by a uniform-
ly bounded sequence of rational functions.

To see this, we note that since [ has positive length there is a
function % which is bounded, nontrivial, and analytic on the comple-
ment of I relative to the sphere [1; p. 254]. Without loss of genera-
lity it may be assumed that
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h(co) = 2Lm Srh(z)dz 0.

Since h is analytic on a neighborhood of S;, Sa h(dz=0fori=1,2,+--.
85
Note that for ¢ in R(D), we have S p(z)dz =0 where X =0D —1
X

and X has the usual positive orientation.

Suppose {p.,} is a sequence of elements of R(D) such that ||p, || <
M for some M and @,(z) — h(z) for each z in D. Then at least some
subsequence of {p,} converges to % in the weak-star topology of
L>(X, dz). But then

0= S g)ndz——»g hdz = S hdz = 2mih/ () = 0,
X X r
a contradiction.

THEOREM 3. Let {S;} be a sequence of pairwise disjoint closed
dises in U all of whose accumulation points form a closed set E in
unit the circle of zero arc length. Let D = U — U, S;. Suppose that
for each © there is a point p; in S; such that S.2, (1 — | p;]) < .

If he H=(D), then there is a sequence {h,} of elements of R(D)
such that ||k, || = ||| and h,(2) — k() for each z in D.

The proof of the theorem will require the following lemma. The
lemma involves harmonic measure, details about which may be found
in [3].

LEMMA. Let D be the domain of Theorem 3. If f is a bounded
harmonic function on D, then there 1is a unique function F in
L=(0D, p), where pt is harmonic measure for some point p of D, such
that f is the harmonic extension to D of F and || flle = || F ||e. Fur-
ther, f = 0 implies that F = 0.

Proof of the lemma. We only sketch the proof here since it is
a simple limiting argument. Let {D,} be a sequence of subdomains
of D satisfying the following three conditions: (a) D,c D,., and
UD, =D; (b) D, is the interior of its closure and the complement
of D, has only a finite number of components; (c) Us-.0DNaoD, =
0D — E. The restriction of f to D, is a bounded harmonic function
on D,. Since the conclusions of the lemma are known for D, (see
[2; §3]), there is a unique bounded function F, in L=(D,, p,) such
that the harmonic extension of F', to D, equals f and

[ Falle = [[F1 Dol = ILFI]
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Hence, F, = F, on 0D N oD, for all n = m. This common function on
oD — E is easily shown to be the desired element of L=(0D, z).

Now we turn to the proof of Theorem 3.

We suppose first that 1< [h(z)| <3 for all 2 in D and hence
that h(z) = exp[f(z) + 1/ *(z)] where f is a positive bounded harmonic
function on D and f* is the harmonic conjugate of f.

By the lemma there is a nonnegative function F' in L= (0D, )

with f(z) = S Fdp, for all z in D and || F|l. = || fll, < 2. Let D, =
aD
U— Uz S; and let f, be the harmonic extension to D, of F'|oD,.

i=1
Then || £, || < 2 and f, — f uniformly on compact subsets of D.

Let f* be the harmonic conjugate of f, on D,, and let p,; be
the period of f¥ about S;,,1<j=n. h is singlevalued so that the
period of f* about each S; is some integer multiple of 27. Since f,
converges uniformly on compact subsets of D to f, p,;— 0 (mod 27)
as n—co for each 7=1,2, ---.

For fixed j, let #,; be the unique number in [, 2) such that
2zr,; = P,; (mod 2m). Since p,; — 0 (mod 2m) for fixed j, we have
r,; — 1 for fixed j as » — co. Define a sequence of negative harmonic
functions as follows: let

i=t 1—p,2
for z in D,. Then because >, (1 — |p,!) < o, we have

au(@) — 3 log | 2=Li|

j=i 1—p,2

for each z in D and the convergence is uniform on compact subsets.
Let g, = exp|f, + a, + «(f + a})]. Then g, is a single-valued ana-
Iytic function on D, and for z in D, g,.(z) — h(2)B(z) where B is the
Blaschke product on U whose zeros are at the points {p,}.

Now if he H*(D) and || k|| £1, then 2+ h is in H=*(D) and 1 <
| h(z) + 2| < 3. Hence, there is a sequence {g,} with g,e H=(D,) such
that {|g.{l = |l%|| + 2 and g, converges pointwise on D to (2 -+ 4)B.
Hence, if h, = g, — 2B, then h e H=(D,), || k., || < || k|| + 4 and h,(z) —
h(z)B(z) for all zin D. Thus, k, converges to 2B uniformly on compact
subsets of D. Since D, is a circle domain, we may conclude that
for each A in H=(D) there is a uniformly bounded sequence {%,} of
elements of R(D) such that %,(z) — h(2)B(z) for each z in D. It will
be shown later that this implies that the h,’s may actually be chosen
so that || A, llp = ||hB||p. (See Theorem 4 and the observations that
follow it.) Assuming this, we may complete the proof of the theorem.

Let
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B.() = [] -2+ (Lr)
mi 1l — Dz \p;

for z in U and let

C. =112t (L)
b 1—Dp;z \p;

for z in U. Let & be in H=(D). Since the interior of S; is dense in
S; we may assume without any loss of generality that p; lies in the
interior of S; for each j. Then h/C, is in H=(D). Note that hB,
converges uniformly on compact subsets of D to 2 as n— . Since
each kB, = (h/C,)(B) may be approximated uniformly on compact sub-
sets of D by elements of R(D) whose norms do not exceed ||kB, || <
I 2|, the same is true for h.

THEOREM 4. Let D be the domain of Theorem 3 and let p be
harmonic measure for some point p in D, If f lies in the weak-
star closure of R(D) in L=(6D, tt), then there is a sequence {f,} of
elements of R(D) such that || f,|| < || fl| and f,— f in the weak-star
topology of L.

Proof. Note that if F is a closed subset of arc length zero in
I' or in 8S; for some 7, then there is an element g of R(D) such that
g=1on Fand |g| <1 on 6D — F. This follows immediately from
the fact that closed sets of arc length zero on the unit circle are peak
sets for closure of the polynomials on the closed unit disc. Note also
that arc length and harmonic measure are mutually absolutely con-
tinuous on on 0D. Thus if m is a measure on D which annihilates
R(D), then m is absolutely continuous with respect to f.

The remainder of the proof now parallels that of [2, Th. 3] and
hence need not be repeated.

Theorem 4 implies the following: let D be the domain of Theorem
3 and let fe H=(D). If there is some uniformly bounded sequence
{f.} of elements of R(D) such that f,(z) — f(z) for all z in D, then
the f, may be chosen so that ||f.l] <{||fll. This follows from the
lemma and Theorem 4 as follows.

By the lemma there is a unique element F' of L=(dD, ) such that

fz) = g Fdp, for every z in D and | f|| = || F'||. The functions f,
D

are continuous on oD and uniformly bounded there. Hence, they have
a weak-star convergent subsequence in L=, which we again denote by

fn. If ¢ is the limit of this sequence, then f(z) :S gdy, because
aD

f&) =Tim £,e) = lim | fudp = | gdp..
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Hence, g = F a.e. £ and thus F lies in the weak-star closure of R(D)
in L=. But now Theorem 4 implies there is a sequence g, in R(D)
with ||g, || £ | F|] = || f]| and g,— F in the weak-star topology of

L». Whence,
0.2 = | gudp.—| Fap. - 16

for each z in D because the harmonic measures are mutually absolu-
tely continuous. This establishes the conclusion.

FINAL REMARKS. The conclusions of Theorems 1, 2, and 3 do not
depend on the smoothness of the boundary. Thus, for example, instead
of deleting closed discs from U to form D in Theorem 3, the deleted
sets S; may be any compact, pairwise disjoint subsets of U provided
that (a) the interior of each S; is connected and dense in S; and the
complement of each S; is connected and (b) the set of accumulation
points of the S; forms a closed set F in I" of zero arc length and
there is a point p; in each S; such that >, (1 — | p;|) < eo. The proof
given is eagily modified to include this more general case. Similar
comments apply to the lemma and Theorm 4 (which are needed to
prove Theorem 3) and to Theorems 1 and 2.

Finally we note that if D is a domain which satisfies the hypo-
theses of either Theorem 1 or Theorem 3, then each function continu-
ous on D and analytic on D may be uniformly approximated on D by
a sequence of rational functions with poles off D. This follows readi-
ly from the fact that H=(D) may be considered to be the weak-star
closure of R(D) in L=(0D, m) where m is either harmonic measure in
the case of the domain of Theorem 3 or m is harmonic measure plus
a point mass at the origin in the case that D is the domain of Theo-
rem 1, and the fact that any measure on 9D which annihilates R(D)
is absolutely continuous with respect to m.
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