
Pacific Journal of
Mathematics

FIXED-POINT-FREE OPERATOR GROUPS OF ORDER 8

FLETCHER GROSS

Vol. 28, No. 2 April 1969



PACIFIC JOURNAL OF MATHEMATICS
Vol. 28, No. 2, 1969

FIXED-POINT-FREE OPERATOR GROUPS OF ORDER 8

FLETCHER GROSS

Let A be a group of order 2n which acts as a fixed-point-
free group of operators on the finite solvable group G. If no
additional assumptions are made concerning G, then "reason-
able" upper bounds on the nilpotent length, l(G), of G have
been obtained only when A is cyclic [Gross] or elementary abelian
[Shult], As a small step in extending the class of 2-groups A
for which such bounds exist, it is shown in the present paper
that if I A I = 8, then l(G) ̂  3 if A is elementary abelian or
quaternion and l(G) S 4 otherwise.

Unfortunately, the author was unable to generalize his methods
of proof to a wider class of groups.

The notation used in this paper agrees with that of [1] with two
additions: (1) If G is a linear group operating on V and U is a G-in-
variant subspace, then {G \ U} denotes the restriction of G to U; and
(2) F0(G) = 1 and Fn+1(G)/Fn(G) is the greatest normal nilpotent sub-
group of G/Fn(G).

THEOREM 1. Let G = NQ be a finite solvable linear group over
a field K whose characteristic is not 2 and does not divide {F^N)].
Assume that N is a normal 2-complement of G and Q is a group of
order 8 containing an element x of order 4. //, in addition, CN(Q) — 1
and ΣgeQd — 0, then it must must follow that

[x\ F2{N)IFJiN)\ = 1 .

Proof. According to the hypothesis Q can be any group of order
8 except an elementary abelian group. If Q is cyclic, this theorem is
a special case of [4, Th. 1.2], and if Q is a quaternion group, then a
stronger result is possible. Thus the main interest in the theorem is
when Q is either dihedral or is the direct product of cyclic groups of
orders 4 and 2.

To prove the theorem we first notice that extending K affects
neither hypothesis or conclusion. Thus we may as well assume that
K is algebraically closed. We now assure that G is a minimal counter-
example to the theorem and let V be the space on which G operates.

Choose S to be a subgroup of F2(N) such that Q normalizes S,
[x2, S] S FX{N), and S is minimal with respect to the above properties.
S must be a p-group for some prime p. Now Q normalizes [x2, S], and
[x\ [x\ S]] = [x\ S] [2]. Due to the minimality of S, this implies
that [x\ S] = S.
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Now CsiO^F^N))) = S ΓΊ F^N). Thus there is an r-group R for
some prime r Φ p such that QS normalizes R, R ^ F^N), [S, R] Φ 1,
and R is minimal with respect to the above properties. R must be a
special r-group, and RjRf must be transformed irreducibly by QS.

Since the characteristic of K does not divide \F1(N)\, V is a
completely reducible K — R module. From this and the fact that
[S, R] < QSR, it follows that F contains a maximal Z" — QSR sub-
module M such that [S, R] is not the identity on V/M. Now let H be
the kernel of the representation of QSR afforded by V/M.

Since {x} must be faithfully represented on V/M, we have that
either Q Π H = 1 or Q/Q n i? is cyclic of order 4. But Q has no non-
zero fixed vector in V and so certainly has none in V/M. Thus if
Q/Q Π H is cyclic of order 4, then it follows from [4] that |>2, £, ΛJ] = 1.
Hence we must have Q Π H = 1. This implies that QSR/H acting as
a linear group on V/M satisfies the hypothesis but not the conclusion of
the theorem. Therefore, in proving the theorem we may as well as-
sume that G = QSR and that V is an irreducible K — G module.

Clifford's theorem now implies that 7 is a completely reducible
K - SR module and 7 = 7 1 φ 7 2 ® φ 7 f where the Vi are the
homogeneous K — SR modules. Q must permute the F, transitively^
and, since [S, R] < QSR, it must be that {[S, R] | F<} Φ 1 for all i.

We now proceed to prove that t = 1, or, in other words, that V
is a homogeneous K — SR module. For this purpose let

Qi = {Q I 9 e Q,

and

Ci = {g\geQi,{[9,SR]\Vi} = l}.

Then Q, and Qd as well as Ĉ  and C3- are conjugate in Q for all ΐ and j . .
[Q: Q.] = ί, Fί is an irreducible J5Γ - QβR module, and {Σ^e^ I Vi} = 0
for all i. The last fact implies that Qi Φ 1. Since {[x2, S] | FJ Φ 1,
x2 cannot belong to d.

LEMMA, d = 1 /or αii i.

Proof. Suppose C{ Φ 1. Since <V> n C< = 1, it follows that d is
cyclic of order 2 generated by an element yiβ Now CΛΛS(X) is normalized
by Q. It follows from this and the fact that conjugation by x transi-
tively permutes the y{ that [u, y{] = [u, yό] for all i and j and all
ueCES(x). Since [u, y{] is represented by the identity on Vi9 this all
implies that [CRS(%), Vi] = 1 for all ί. Since a? and y^ generate Q, we
obtain that CRS(ύ) = CRS(Q) = 1. Hence α; acts as a fixed-point-free
automorphism on i?S. From this follows [a;2, S, R] = 1 [3] which is
a contradiction.
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LEMMA. Qi = Q and t = 1.

Proof. If Qi is elementary abelian, it follows from [7, Th. 4.1]
that d Φ 1. Thus, since Qi Φ 1, we must have either Qi — Q or Q{

is cyclic of order 4 generated by an element y. If Qi is cyclic of
order 4 we must have y2 = x2 because Q only has 8 elements. Now
Qi can have no nonzero fixed vector in F { . Theorem 1.2 of [4] now
yields that [α;2, S, R] is represented by the identity on Vi. Since
this is impossible, Q{ must be Q. Then £ = [Q: Qt ] = 1 and so F is a
homogeneous if — S12 module.

COROLLARY. Z(SR) = R
f
 = 1.

Proof. Z(SR) is represented by scalar matrices and so Q must
centralize Z(SJB). Thus Z(SR) £ CΓιS(Q) = 1. Now R' is normalized
by QS and so, due to the minimality of R, we must have [S, 12'] = 1,
Therefore 12' ̂  Z(S12).

Now let V — U1 0 U2 0 0 Us where the Ui are the homogene-
ous K - R submodules of V. Let Hi = {g \ g e QS, U& = Z7J and ̂  =
Hi Π S. Now SQ must permute the ?7,- transitively since V is an ir-
reducible K - QSR module. Thus s = [QS: Hi] for all i. But V is
a homogeneous K — SR module. This implies that (UiS)Q — UiS.
Hence UtS = V for all i. Therefore s = [5T: S,] = [QS: Hi] which
means that Hi must contain a Sylow 2-subgroup of SQ. Since the Hi
are all conjugate in QS, this implies that Q ^ Hi for some i, i = 1
say. Then ζ) fixes Z7lβ Let JRX be the kernel of the representation of
R afforded by U^ Clearly Rλ is normalized by Q. But 12 is abelian
and so R is represented by scalar matrices on UΊ. It now follows
that [R/Ru Q] = 1. Since CR(Q) = 1, this implies that jf2x = 12. But,
since V is an irreducible K — QS12 module and 12 <] QS12, this is im-
possible. This contradiction proves the theorem.

THEOREM 2. Let G = NQ be a finite solvable linear group over a
field K whose characteristic does not divide \ Fλ(N) \. Assume that N is
a normal 2-complement of G and Q is an ordinary quaternion group.
If, in addition, CN(Q) = 1 and ΣgeQ^ = 0, then it must follow that
[Q'9 FX(N)] = 1.

Proof. Extending K affects neither hypothesis nor conclusion.
Thus we assume that K is algebraically closed. If [Q', Fλ(N)] Φ 1,
then there is a subgroup P of Fλ(N) such that Q normalizes P, Q'
does not centralize P, and P is minimal with respect to the above
properties. Then P is a special p-group for some prime p and P\Pf

is transformed faithfully and irreducibly by Q. This implies that
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I PjP' I = p2

f and so P is either elementary abelian of order p2 or extra-
special of order p3 and exponent p.

If V is the vector space on which G operates, then

where the F* are the homogeneous K — P modules. By renumbering,
we may assume that [Qf, P] is not the identity on Vlt Now if Q, as
a permutation group on the Vi9 had an orbit of length 8, then Σ^eρ 9
would not be 0. This implies that Qr must fix F x.

If {PI FJ is abelian, then P is represented by scalar matrices on
Vι and so we would have {[Q', P] | V,} = 1. Thus {P | Fx} is not abelian.
This implies that P = {P | FJ = an extra-special p-gγowp of order pz

and exponent p.
Now let H = {g \ g e Q, F ^ = Fj}. In order that Σ 5 e g ί/ = 0, we

must have {Σ^e^^l ^ l = 0. Now a faithful irreducible Z-represen-
tation of P is uniquely determined by the representation of P ' [6].
It follows from this that H = CQ(Pf). Since CP(Q) = 1, H Φ P. But
the automorphism group of Pf is cyclic. Thus Q/ίf is cyclic. This
implies that H is cyclic of order 4. Let x generate H and let y be
an element of Q not contained in H.

Case 1. p = 1 (mod 4).

Suppose first that char (i£) ^ 2. Then Theorem 3.1 of [7] implies
that {[x2, P] I Vι} = 1, which is a contradiction. If char (K) = 2, then
Theorem J3 of [6] leads to {x* + a?2 + α; + 11 FJ Φ 0, also a contra-
diction.

Case 2. p = 3 (mod 4).
In this case GF(p) does not contain a primitive 4th root of unity.

Since Q faithfully transforms P/P', it follows that there elements α,
b generating P such that

ay = b,by = a'1 (mod P') .

But this implies that [a, b]y = [6, α"1] = [α, 6], contrary to y£CQ{Pf).

THEOREM 3. Let Q be a group of order 8 which acts as a fixed-
point-free group of automorphisms of the finite group G. Then
G is solvable and l(G) ^ 3 if Q is either elementary abelian or a
quaternion group and l(G) fg 4 otherwise. The upper bound in the
case when Q is elementary abelian or a quaternion group is best-
possible.

Proof. If G admits a 2-group as a fixed-point-free operator group,
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then G must have odd order and so G must be solvable from the
Feit-Thompson Theorem [l]. If Q is elementary abelian, the result
follows from Thorem 4.3 of [7]. Therefore assume that Q has an
elemen x of order 4. We now use induction on | G | .

If H19 H2 are distinct minimal Q-admissible normal subgroups, then
l(G) ^ l[(G/H) x (G/H2)] = Max{l(G/HJ, l(G/H2)}. Thus in proving the
theorem we may assume that G has only one minimal Q-admissible
normal subgroup. Hence F^G) is a p-group for some prime p. Now
let N = G/F^G) and consider NQ as a linear group acting on V where
V is JP1(G)/J9(JP1(G)) written additively. Theorems 1 and 2 imply that
[x\ Fkity/Fk-άN)] = 1 where k = 1 if Q is a quaternion group and
k — 2 otherwise. It follows from this that [x2, N/F^N)] = 1. But
then N/Fk^iN) admits a fixed-point-free operator group of order 4.
This implies that l(N/Fk^(N)) ^ 2. We now have that

l(G) = 1 + l(N) = 1 + (k - 1) + l(N/Fk^(N)) ^ k + 2 .

Finally, the claim of best-possible in the statement of the theorem is
justified by [5].
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