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Let /: X~> Y be a map and let e: ΣΩX-+X be the map
whose adjoint is lΩsSm Then we prove the following results.

THEOREM 1. n i l / ^ 1 if and only if feP: ΣΩXvΣΩX-> Y
can be extended to ΣΩX x ΣΩX.

THEOREM 2. Let X be an Hr-space. Then nil / ^ 1 if and
only if fV: X V X-> Y can be extended to X X X.

THEOREM 3. n i l / = nil (fe).

Theorem 1 may be regarded as an extension of Stasheff's
criterion for a loop space to be homotopy-commutative. These
theorems may all be regarded as extensions of Stasheff's
criterion in various ways. We also discuss the duals of these
results. Theorem 3 dualises, but the others do not. A sample
result in the dual situation is

THEOREM, conil / ^ Σw cat {e'f) where ef\ Y-± ΩΣY is the
adjoint of lΣγ.

In this paper we shall work in the category ^~ of spaces with
base point and having the homotopy type of countable CW complexes.
All maps and homotopies shall respect base points. The maps of our
category J7~ shall be homotopy classes of maps, but for simplicity
we shall use the same symbol for a map and its homotopy class.
Given spaces X, Y, we denote the set of homotopy classes of maps
from X to Y by [X, Y]. We have an isomorphism τ: [ΣX, Y\ -» [X, ΩY]
where Σ, Ω are the suspension and loop functors respectively. We
denote τ(lΣX) by e' and r-^l^) by e.

1* For convenience let us recall some notions of Peterson's theory
of structures [7]. We shall follow the definitions and notations of
[4]. Let ^ be a category. By a left structure system j^f over ^
we mean ^f — (L, W, S; d, j) where L, W, S: ('£J —> ^7~ are covariant
functors and d: W—>L,j: W—+S are natural transformations. Given
an object X of ctf we say that X is ^-structured if there exists a
map φ: SX—+LX such that φj(X) — d(X). Given a category ^ , we
have a category ^"2 of pairs. An object of rώyl is a map f:X—•> Y
of <g% and given objects /: X1—>X>, g: Y1—> Y2 of ^ 2 , a map (u, v):
f-+g is a pair of maps u: X1 —> Yu v: X2 —* Y2 such that gu = vf. We
have convariant functors Do, Dx:

 c£"2 —> ^ given by DQ(f) = Y, Dx{f) =
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X where f:X—+Y. Also given (u,v):f—»g, we have D0(u,v) = v,
Di(u,v) = u. We have a natural trasformation G:D1—+D0 given by
G(f) = / for / e £Γ2. Given a left structure Ssf = (L, W, S; rf, i) over
r ^ , we have a left structure Sf2 = (LD0, WDlf SDL; (dD0)(WG), jD,)
over r<£'2. Given an object / of rώ~:'\ we shall say that / is J/f-structured
if it is //^-structured. It is easily seen that if /: X—> Y is an object
of r<<f2, and X or Y is iX"-structured, then / is JX'-structured.

We have the left structure H — (1, VLi> TΠu F\ j) over J/~, where
1 is the identity functor of J/~, V J^ is the wedge product, ΠLi is the
cartesian product and V, j are the folding and inclusion natural trans-
formations respectively. We observe that a space X is iί-structured
precisely if it is an iϊ-space. Also a map f X—» Y is iJ-structured
if and only if fV: X V X-> Y extends to X x X.

2. Let f/? = (L, W,S;dfj) be a left structure system over a
category &. Let /: X—* y, g: Y—> Z be maps. Then it is easily seen
that if / is J27-structured or g is jv: -structured, then gf is jvr-
structured.

We recall that in [l], there is defined a generalized Whitehead
product [,]: [ΣA, X] x [ΣB, X\ — [Σ(A A B), X] where A, B, X are
spaces and A Λ B is the smashed product. Now suppose X is an H-
space. Then we have a generalized Samelson product (see [2]) <(,)>:
[A, X] x [JB, I ] ^ [ 4 Λ £>, X]' These homotopy operations are related
in the following way. Suppose a is an element of [ΣA, X], β is an
element of \ΣB, X] where A, J5, X are spaces. Then

τ[a, β] =.<τ(α), r(^)> .

We shall also make the following convention. Let /: X—+ Y be a
map. Then we have an iϊ-map Ωf\ΩX—+ΩY. We shall write nil/
for nilβ/ (see [3] for definitions). Similarly, we have an iϊ'-map
Σf:ΣX-»ΣY. We shall write conil/ for conΆΣf.

THEOREM 1. Let f: X—> Y be a map. Then nil/ ^ 1 if and only
if feV\ ΣΩX V ΣΩX-> Y can be extended to ΣΩX x ΣΩX.

Proof. Let c: ΩX x ΩX—+ ΩX be the basic commutator of ΩX.
Then nil / £ 1 if and only if (β/) c ~ *. Let ix, i2: ΣΩX-+ΣΩX V ^i?X
be the inclusions in the first and second coordinates respectively. Then
we have a generalized Whitehead product

[i19 i2] e [Σ(ΩX A ΩX), ΣΩX V ΣΩX] .

Now ΣΩX x X(?X is homotopically equivalent to
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(ΣΩX V ΣΩX) U CΣ(ΩX x ΩX)
[fi,*2]

(see [1]), so that feV extends to ΣΩX x ΣΩX if and only if feV[iu i2] = 0,
that is, [fe,fe] = 0. Now τ[fe,fβ] = <Ωf, Ωf} and

^#<β/, Ω/y = c(Ωf x fl/) ~ (Ωf)c

where the first c denotes the commutator ΩY x ί2X—> ί2F and the second
c denotes the commutor ΩX x ΩX-+ΩX and g : £ Γ x ΩY ΩY A ΩY
is the projection. Since τ is an isomorphism and g* is a monomorphism,
it follows that fe7 extends to ΣΩX x ΣΩX if and only if n i l / ^ 1.

REMARK. If we take / to be the identity map of X, then the
theorem says that nil X ^ 1 if and only if e7: ΣΩX V ΣΩX-+X ex-
tends to ΣΩX x ΣΩX, which is just Stasheff?s criterion for the homo-
topy-commutativity of a loop space (see [8]). We also observe that
the statement that fe7 extends to ΣΩX x ΣΩX is just the statement
that fe can be ίf-structured.

THEOREM 2. Let f: X—> Y be a map where X is an H'-space.
Then n i l / ^ 1 if and only if fF: X V X-+Y can be extended to
X xX.

In view of the fact that fF can be extended if and only if / can
be H structured, Theorem 2 will follow from Theorem 1 and the
following lemma.

LEMMA. Let f: X-+Y be a map where X is an H'-space. Then
f is H-structured if and only if fe: ΣΩX—+ Y is H-structured.

Proof. We need only show that if fe is ίf-structured then / is
iϊ-structured. Suppose fe can be iϊ-structured. Then we can find
a map φ: ΣΩX x ΣΩX^ Y such that φj ~ F(fe V fe) = feF. Since
X is an ίΓ space we have a map s: X—>ΣΩX such that es ~ lx. Then
φ(s x s): X x X —> Y is an ϋZ-structure for /. In fact φ(s x s)j =
φj(s V s) ~ feF(s V s) = fesF ~ fF.

REMARK. Theorems 1 and 2 imply that nil e ̂  1 if and only if
ΩX is homotopy-commutative, that is, if and only if nil X ^ 1. In fact,
we always have nil X = nil e. This fact follows from the next result.

THEOREM 3. Let f:X—>Y be a map. Then n i l / = nil (fe).

Proof. Since we always have nil (fe) <£ nil/, it suffices to show
that nil/ ^ nil (fe). Suppose nil (fe) ̂  n. Then (Ωf)(Ωe)cn+1 ~ *
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where cΛ+1: (ΩΣΩX)n+1 —> ΩΣΩX is the commutator map of weight
(n + 1). Then we have

(Ωf)cn+1(Ωe x x Ωe) ~ *

where cw+1: (ΩX)n+ί —> £>X is also the commutator map of weight (w + 1).
Consider the map e': ΩX-+ΩΣΩX such that e'= τ{lQΣX). Clearly
(Ωe)ef — 1ΩΣ. Hence we have (Ωf)cn+1~*, that is, nil f<^n. This
proves the theorem.

3* We now consider the dual situation. It is clear that Theorem 3
dualises immediately to give the following result.

THEOREM 4. Let f: X—> Y be a map and let e'\ Y-+ ΩΣY be the

adjoint of 1ΣX. Then conil/= conil(e'/).

Let us first define a right structure system over a category W.
By this we shall mean & = (R, P, T; d, j) where R, P, T: cέ' —> ̂ ~
are covariant functors and d\R~+P,j\T~+P are natural trans-
formations. Given an object J e ^ 7 , we say that X is ^-structured
if there exists a map φ: RX—> TX such that j{X)φ — d{X). Given a
right structure & — (R, P, T; d, j) over ^ , we can form a right
structure ^ 2 = (RDU PD0, TD0; (dD0)(RG), jD0) over c^\ We shall
say that an element f:X-+Y of c^ is ^-structured if it is ^ 2 -
structured. It is easily checked that if X or Y is .^-structured, then
/ is .^-structured.

The dual of the iϊ-structure is the ίf'-structure (1, Πi=i> V?=iί J» i)>
a right structure over J ^ . Clearly a space X is iϊ'-structured if and
only if it is an iϊ'-space. Also a map f:X—>Y is iϊ'-structured
if and only if jf: X—>Y2 can be compressed into Y V Y. The dual
of Theorem 1 would read: conil/^ 1 if and only if je'f: X-+ {ΩΣYf
can be compressed into ΩΣY V ΩΣY. This, however, is false (see
[5]). But in this case, we can generalize the iϊ'-structure to another
familiar right structure, namely the w-cat structure (1, ΠΓΛ1; Tl9 j,j)
over ^ " , where T1 is the fat wedge functor. Thus the 1-cat structure
is precisely the ίf'-structure. Given a space X, we have cat X S n
if there exists a map φ: X-+ T^X, , X) such that jφ - j : X-+Xn+1.
Given a map f:X-+Y, we have c a t / ^ π if jf:X—>Yn+ι can be
compressed into Γi(Γ", •••, Y).

Given a right structure system & = (iί, P, T; d, i) over ^ , let
us consider the cofibre of j:T—>P. Suppose the cofibre of j is
q:P—>Q. Let jw—+P be the fibre of q. Then we obtain a right
structure system . ^ = (i?, P, ϊ7^; d, i j over <g% called the associated
weak structure. We shall say that an object l e ^ 7 is weakly ^ -
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structured if it can be ^,-structured. Clearly, given a map /: X —* Y
we have w cat / ^ n if qjf~ * where q: Yn+1 —> A S 1 ^ *s the pro-
jection onto the smashed product. Given a right structure & = (R,
P, T; d, j) over <g% we have a right structure Σ& = (2Ί2, ,ΣP, 2T; 2Ή,
2̂ ') over ^ , where Σ is the suspension functor. Clearly, if / is &-
structured, it is Σέ%-structured and it is weakly ^-structured. Thus
Σw cat / ^ w cat / ^ cat / for any map /.

Let /: X—»Y, g: Y—+Z be maps. Then it is easily seen that
cat (gf) ^ min {cat/, cat g} and w cat (gf) ^ min {w cat/, w cat g}.

THEOREM 5. Let f: X—+Y be a map and let e'\ Y-+ΩΣY be the
adjoint of 1ΣY. Then conil/ ^ Σw cat (e'f).

Proof. Suppose Σw cat (e'f) ̂  n. Then Σ(qje'f) ^ * where
q: (ΩΣY)n+ί—* /\U? ΩΣY is the projection. Let c: ΣY —> y-iϊ ΣY be
the commutator map of weight (n + 1) for ΣY. Then we can form
a map c: Yn+ι-+Ω(\fUϊΣY) such that cj = τ(c) (see [5]). Since
Σ(qje'f) ~ *, applying τ we have ΩΣ(q/j)e'f ̂  *. Consider the follow-
ing diagram where each square is homotopy-commutative.

X

\f

i = l

We have then that β'gj/ — *. Using Lemmas 4.1fc and 4.2fc of
[5], it follows that cjf ~ *, that is, r(c)/ ̂  *. Hence c(Σf) ^ *, and
hence conil/^ ^. This proves that conil/^ Σw cat(e'f).

THEOREM 6. Lβί f:X—+Y be a map where Y is an H-space.
Then c a t / = cat (β'/), w cat/ = w cat (β'/) where eτ\ Y—+ΩΣY is the
adjoint of 1ΣY.

Proof. We need only show that c a t / ^ cat(e'/), and

w cat / ^ w cat (β'/) .

Since Y is an iϊ-space, we have a map r: βi/F—>Y such that re' ̂  1F#

Then cat / = cat (re'f) ^ cat (e'/) and w cat / = w cat (re'/) ^ w cat (e'f).
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