Pacific Journal of Mathematics

A NOTE ON EXTREMAL LENGTH AND MODULUS

RICHARD EMANUEL KATZ

Vol. 28, No. 2 April 1969

A NOTE ON EXTREMAL LENGTH AND MODULUS

RICHARD KATZ

The equality of extremal length and modulus is shown for general annuli in a Riemannian manifold.

In a recent paper, [2], Ow showed that the modulus and extremal length of an annulus in a Riemannian manifold are equal under the assumption that the set of critical points of the harmonic measure of the annulus has capacity zero. The purpose of this note is to show that this condition can be dispensed with. We refer the reader to [2] for definitions.

THEOREM. The extremal length (λ) and modulus (μ) of an annulus (Ω, α, β) are equal.

Proof. The inequality $\lambda \ge \mu$ was shown in [2].

To show the opposite inequality, let u be the harmonic measure of (Ω, α, β) , and h be a function such that

$$h \mid \alpha = 0, h \mid \beta = 1, |\mathcal{V}h^2 - \mathcal{V}u^2| < \varepsilon$$
,

and h has only a finite number of critical points in Ω . For the existence of such a function see Milnor [1]. Let Γ_0 be the set of integral curves of Γh which do not meet a critical point and P the set of admissible densities on Ω . It is immediate that $|\Gamma h| \in P$. Now for $\gamma \in \Gamma_0$, $\rho \in P$

$$\int_{\Omega} \rho^2 dV = \int_{\sigma} \left(\int_{\tau} \frac{\rho^2}{|\nabla h|^2} dh \right) * dh \ge \int_{\sigma} \left(\int_{\tau} \left| \frac{\rho}{|\nabla h|} \right| dh \right)^2 * dh$$

and

$$\int_{\alpha} \Bigl(\int_{\gamma} \Bigl| \frac{\rho}{Vh} \Bigr| dh \Bigr)^2 * dh = \int_{\alpha} \Bigl(\int_{\gamma} \rho dl \Bigr)^2 * dh \geqq \inf_{\Gamma_0} \Bigl(\int_{\gamma} \rho dl \Bigr)^2 \! \int_{\alpha} * dh \; .$$

Since $|\mathcal{V}h^2 - \mathcal{V}u^2| < \varepsilon$, it follows that

and therefore,

$$\lambda \leqq \sup_{p} \inf_{\Gamma_0} rac{\left(\int_{\gamma}
ho dl
ight)^2}{\int_{arrho}
ho^2 d\, V} \leqq \mu \, + \, K arepsilon$$

382 R. KATZ

for a suitable constant K. Since ε was arbitrary, we have $\lambda \le \mu$ which completes the proof.

REFERENCES

- 1. J. Milnor, Lectures on the h-cobordism theorem, Princeton University Press, Princeton, N. J., 1965.
- 2. W. Ow, An extremal length criterion for the parabolicity of Riemannian spaces, Pacific J. Math. 23 (1967), 585-590.

Received March 4, 1968.

CALIFORNIA STATE COLLEGE LOS ANGELES, CALIFORNIA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN Stanford University Stanford, California J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R PHELPS University of Washington Seattle, Washington 98105 RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

Pacific Journal of Mathematics

Vol. 28, No. 2

April, 1969

Richard Arens and Donald George Babbitt, <i>The geometry of relativistic</i>	
n-particle interactions	243
Kirby Alan Baker, Hypotopological spaces and their embeddings in lattices	
with Birkhoff interval topology	275
J. Lennart (John) Berggren, Finite groups in which every element is	
conjugate to its inverse	289
Beverly L. Brechner, <i>Homeomorphism groups of dendrons</i>	295
Robert Ray Colby and Edgar Andrews Rutter, QF – 3 rings with zero	
singular ideal	303
Stephen Daniel Comer, Classes without the amalgamation property	309
Stephen D. Fisher, <i>Bounded approximation by rational functions</i>	319
Robert Gaines, Continuous dependence for two-point boundary value	
problems	327
Bernard Russel Gelbaum, Banach algebra bundles	337
Moses Glasner and Richard Emanuel Katz, Function-theoretic degeneracy	
criteria for Riemannian manifolds	351
Fletcher Gross, Fixed-point-free operator groups of order 8	357
Sav Roman Harasymiv, On approximation by dilations of distributions	363
Cheong Seng Hoo, Nilpotency class of a map and Stasheff's criterion	375
Richard Emanuel Katz, A note on extremal length and modulus	381
H. L. Krall and I. M. Sheffer, <i>Difference equations for some orthogonal</i>	
polynomials	383
Yu-Lee Lee, On the construction of lower radical properties	393
Robert Phillips, <i>Liouville's theorem</i>	397
Yum-Tong Siu, Analytic sheaf cohomology groups of dimension n of	
n-dimensional noncompact complex manifolds	407
Michael Samuel Skaff, Vector valued Orlicz spaces. II	413
James DeWitt Stein, <i>Homomorphisms of B*-algebras</i>	431
Mark Lawrence Teply, <i>Torsionfree injective modules</i>	441
Richard R. Tucker, <i>The</i> δ^2 -process and related topics. II	455
David William Walkup and Roger Jean-Baptiste Robert Wets, Lifting	
projections of convex polyhedra	465
Thomas Paul Whaley Large sublattices of a lattice	177