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The purpose of this paper is to give a simple construction
of the lower radical properties for an arbitrary class of rings.

Let y be a class of rings. We shall say that the ring R is an
S^-ήng if R is in Sf. An ideal J of R will be called an ^-ideal if
J is an ^-ring. A ring which does not contain any nonzero ^-ideals
will be called ^-semisimple. We shall call £f a radical property if
the following three conditions hold:

(A) homomorphic image of an S^-τmg is an ^-ring,
(B) every ring R contains a largest S^-idesl S,
(C) the quotient ring R/S is ^-semi-simple.
The largest ^-ideal S of a ring R is called the ^-radical of R.
Given a class of rings jy; Kurosh has constructed a lower radical

property S^{J*f) determined by jy, [1], [2], i.e., £f(j&') is a radical
property, j ^ S ^ ( j ^ ) , and if ^~ is any radical property and j / g
S~ then ^ ( J ^ ) g j ^ T

In this paper we are going to give a simpler construction.
The construction is similar to [3], where we take s$f to be the

class of all nilpotent rings. It is proven in [3] that this construction
is exactly the lower radical property determined by the class of nil-
potent rings. We want to extend this construction to any class of
rings.

Let s?f be a class of ring and let j ^ be the class of all homo-
morphic images of rings in j>/. For each ring R, let D^R) be the
set of all ideals of iϋ, and by induction, we define Dn+ί(R) to be the
family of all rings which are ideals of some ring in Dn(R) and set

D(R) = (J {#»(£): n = 1,2, 3, •••}.

A ring R is called a ^ ( j ^ ) - r i n g if D(RjI) contains a nonzero ring
which is isomorphic to a ring in jzfQ for each ideal I of R and
The following facts are clear.

LEMMA 1.

LEMMA 2. // / is an ideal of R then D(I)QD(R).

LEMMA 3. Every isomorphic image of an S^f(Ssf)-ring is an
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LEMMA 4. // A is isomorphίc to B and D{A) contains a ring
which is isomorphic to a nonzero ring in j^J then so does D{B).

LEMMA 5. If J^Q & then £

Also we need the following fact [1].

LEMMA 6. A class of rings ^ is a radical property if and only

if
(A) A homomorphic image of an 6^-ring is an Spring.
(D) // every nonzero homomorphic image of a ring R contains

a nonzero S^-ideal, then R is an S^-ring.

LEMMA 7. If S^ is a radical property, then for any ring R
and any ideal I of R, the ^-radical of I is an ideal of R.

THEOREM 1. // J^ is a class of rings, then JέfiJtf'), contracted
above, is a radical property.

Proof. If R is in ^f(Stf) and / is any ideal of R. Consider the
quotient ring R/I and any proper ideal J/I of R/I, R/I/J/I ~ R/J.

By definition, D(R/J) contains a ring which is isomorphic to a
nonzero ring in s*f0 and therefore so does D(R/I/J/I), and hence R/I
is in Jif{Ssf). Every homomorphic image of R is isomorphic with R/I
for some /. Hence, by Lemma 3, (A) follows.

Suppose that every nonzero homomorphic image of R contains a
nonzero ^(J^)-ideal and let / be any ideal of R and I Φ R. Then
R/I contains a nonzero ^-ideal J/I. Now D(J/I)QD(R/I), hence
D(R/I) contains a ring which is isomorphic to a nonzero ring in j^J.
By definition of ^f(J^), R is in £f(j&). This proves (D). By Lemma
6, ^f(J^) is a radical property.

THEOREM 2. // J7~ is a radical property then

Proof. By Lemma 1, y g ^ ( y ) .
If there is a ring R in <2f{^~) but not in j^7 let / be

of R. Then Rjl is a nonzero ring in £f{^) and is ^semi-simple.
Without loss of generality we may assume R is in ^f{^~) but is
^^semi-simple. By definition D(R) contains a ring / Φ 0 such that
J e ^ T But if if is a nonzero ideal of R, i.e., KeD^R), then, by
Lemma 7, the .^radical of K is also an ideal of R. But R is ^
simi-simple. Hence K is also ^semi-simple. By induction it is easy
to see every ring in D(R) is ^semi-simple. This is a contradiction.
Hence
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THEOREM 3. / / szf is a class of rings then ^f(J^) is the lower
radical property determined by sf.

Proof. Let S? be any radical property such that j& £ £f. Then
by Theorem 2 and Lemma 5 S? =
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