Pacific Journal of Mathematics

ON THE CONSTRUCTION OF LOWER RADICAL PROPERTIES

YU-LEE LEE

Vol. 28, No. 2

April 1969

ON THE CONSTRUCTION OF LOWER RADICAL PROPERTIES

YU-LEE LEE

The purpose of this paper is to give a simple construction of the lower radical properties for an arbitrary class of rings.

Let \mathscr{S} be a class of rings. We shall say that the ring R is an \mathscr{S} -ring if R is in \mathscr{S} . An ideal J of R will be called an \mathscr{S} -ideal if J is an \mathscr{S} -ring. A ring which does not contain any nonzero \mathscr{S} -ideals will be called \mathscr{S} -semisimple. We shall call \mathscr{S} a radical property if the following three conditions hold:

(A) homomorphic image of an \mathscr{S} -ring is an \mathscr{S} -ring,

(B) every ring R contains a largest S-ideal S,

(C) the quotient ring R/S is S-semi-simple.

The largest \mathcal{S} -ideal S of a ring R is called the \mathcal{S} -radical of R. Given a class of rings \mathcal{N} , Kurosh has constructed a lower radical property $\mathcal{S}(\mathcal{M})$ determined by \mathcal{N} , [1], [2], i.e., $\mathcal{S}(\mathcal{M})$ is a radical property, $\mathcal{M} \subseteq \mathcal{S}(\mathcal{M})$, and if \mathcal{T} is any radical property and $\mathcal{M} \subseteq \mathcal{T}$ then $\mathcal{S}(\mathcal{M}) \subseteq \mathcal{T}$.

In this paper we are going to give a simpler construction.

The construction is similar to [3], where we take \mathscr{N} to be the class of all nilpotent rings. It is proven in [3] that this construction is exactly the lower radical property determined by the class of nilpotent rings. We want to extend this construction to any class of rings.

Let \mathscr{N} be a class of ring and let \mathscr{N}_0 be the class of all homomorphic images of rings in \mathscr{N} . For each ring R, let $D_1(R)$ be the set of all ideals of R, and by induction, we define $D_{n+1}(R)$ to be the family of all rings which are ideals of some ring in $D_n(R)$ and set

$$D(R) = \bigcup \{D_n(R): n = 1, 2, 3, \cdots\}$$
.

A ring R is called a $\mathscr{L}(\mathscr{M})$ -ring if D(R/I) contains a nonzero ring which is isomorphic to a ring in \mathscr{M}_0 for each ideal I of R and $I \neq R$. The following facts are clear.

Lemma 1. $\mathscr{A} \subseteq \mathscr{A}_0 \subseteq \mathscr{L}(\mathscr{A}).$

LEMMA 2. If I is an ideal of R then $D(I) \subseteq D(R)$.

LEMMA 3. Every isomorphic image of an $\mathscr{L}(\mathscr{A})$ -ring is an $\mathscr{L}(\mathscr{A})$ -ring.

LEMMA 4. If A is isomorphic to B and D(A) contains a ring which is isomorphic to a nonzero ring in \mathcal{A}_0 then so does D(B).

LEMMA 5. If $\mathscr{A} \subseteq \mathscr{B}$ then $\mathscr{L}(\mathscr{A}) \subseteq \mathscr{L}(\mathscr{B})$.

Also we need the following fact [1].

LEMMA 6. A class of rings S is a radical property if and only if

(A) A homomorphic image of an S-ring is an S-ring.

(D) If every nonzero homomorphic image of a ring R contains a nonzero \mathcal{S} -ideal, then R is an \mathcal{S} -ring.

LEMMA 7. If S is a radical property, then for any ring R and any ideal I of R, the S-radical of I is an ideal of R.

THEOREM 1. If \mathscr{A} is a class of rings, then $\mathscr{L}(\mathscr{A})$, contructed above, is a radical property.

Proof. If R is in $\mathscr{L}(\mathscr{A})$ and I is any ideal of R. Consider the quotient ring R/I and any proper ideal J/I of R/I, $R/I/J/I \cong R/J$.

By definition, D(R/J) contains a ring which is isomorphic to a nonzero ring in \mathcal{M}_0 and therefore so does D(R/I/J/I), and hence R/Iis in $\mathcal{L}(\mathcal{M})$. Every homomorphic image of R is isomorphic with R/Ifor some I. Hence, by Lemma 3, (A) follows.

Suppose that every nonzero homomorphic image of R contains a nonzero $\mathscr{L}(\mathscr{M})$ -ideal and let I be any ideal of R and $I \neq R$. Then R/I contains a nonzero \mathscr{L} -ideal J/I. Now $D(J/I) \subseteq D(R/I)$, hence D(R/I) contains a ring which is isomorphic to a nonzero ring in \mathscr{M}_0 . By definition of $\mathscr{L}(\mathscr{M})$, R is in $\mathscr{L}(\mathscr{M})$. This proves (D). By Lemma 6, $\mathscr{L}(\mathscr{M})$ is a radical property.

THEOREM 2. If \mathcal{T} is a radical property then $\mathcal{L}(\mathcal{T}) = \mathcal{T}$.

Proof. By Lemma 1, $\mathcal{T} \subseteq \mathcal{L}(\mathcal{T})$.

If there is a ring R in $\mathscr{L}(\mathscr{T})$ but not in \mathscr{T} , let I be \mathscr{T} -radical of R. Then R/I is a nonzero ring in $\mathscr{L}(\mathscr{T})$ and is \mathscr{T} -semi-simple. Without loss of generality we may assume R is in $\mathscr{L}(\mathscr{T})$ but is \mathscr{T} -semi-simple. By definition D(R) contains a ring $J \neq 0$ such that $J \in \mathscr{T}$. But if K is a nonzero ideal of R, i.e., $K \in D_1(R)$, then, by Lemma 7, the \mathscr{T} -radical of K is also an ideal of R. But R is \mathscr{T} simi-simple. Hence K is also \mathscr{T} -semi-simple. By induction it is easy to see every ring in D(R) is \mathscr{T} -semi-simple. This is a contradiction. Hence $\mathscr{T} = \mathscr{L}(\mathscr{T})$. **THEOREM 3.** If \mathscr{A} is a class of rings then $\mathscr{L}(\mathscr{A})$ is the lower radical property determined by \mathscr{A} .

Proof. Let \mathscr{S} be any radical property such that $\mathscr{A} \subseteq \mathscr{S}$. Then by Theorem 2 and Lemma 5 $\mathscr{S} = \mathscr{L}(\mathscr{S}) \supseteq \mathscr{L}(\mathscr{A})$.

BIBLIOGRAPHY

1. N. J. Divinsky, Rings and radicals, University of Toronto Press, 1965.

2. A. G. Kurash, Radicals of rings and algebras, Mat. Sbornik (1953).

3. Y. L. Lee, A characterization of Baer lower radical property, Kyungpook Math. J. 7 (1967).

Received January 19, 1968. Presented to the Society on January 26, 1967.

KANSAS STATE UNIVERSITY MANHATTAN, KANSAS

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN Stanford University Stanford, California J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

K. YOSIDA

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH UNIVERSITY OF CALIFORNIA WASHINGTON STATE UNIVERSITY MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON NEW MEXICO STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY OREGON STATE UNIVERSITY CHEVRON RESEARCH CORPORATION UNIVERSITY OF OREGON OSAKA UNIVERSITY TRW SYSTEMS UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. **36**, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

R. R PHELPS

University of Washington Seattle, Washington 98105

Pacific Journal of Mathematics Vol. 28, No. 2 April, 1969

Richard Arens and Donald George Babbitt, <i>The geometry of relativistic</i> <i>n-particle interactions</i>	243
Kirby Alan Baker, Hypotopological spaces and their embeddings in lattices with Birkhoff interval topology	275
J. Lennart (John) Berggren, Finite groups in which every element is	
conjugate to its inverse	289
Beverly L. Brechner, <i>Homeomorphism groups of dendrons</i>	295
Robert Ray Colby and Edgar Andrews Rutter, QF – 3 <i>rings with zero singular ideal</i>	303
Stephen Daniel Comer, <i>Classes without the amalgamation property</i>	309
Stephen D. Fisher, <i>Bounded approximation by rational functions</i>	319
Robert Gaines, Continuous dependence for two-point boundary value	
problems	327
Bernard Russel Gelbaum, <i>Banach algebra bundles</i>	337
Moses Glasner and Richard Emanuel Katz, <i>Function-theoretic degeneracy</i>	
criteria for Riemannian manifolds	351
Fletcher Gross, <i>Fixed-point-free operator groups of order</i> 8	357
Sav Roman Harasymiv, On approximation by dilations of distributions	363
Cheong Seng Hoo, <i>Nilpotency class of a map and Stasheff's criterion</i>	375
Richard Emanuel Katz, A note on extremal length and modulus	381
H. L. Krall and I. M. Sheffer, <i>Difference equations for some orthogonal</i>	
polynomials	383
Yu-Lee Lee, On the construction of lower radical properties	393
Robert Phillips, <i>Liouville's theorem</i>	397
Yum-Tong Siu, Analytic sheaf cohomology groups of dimension n of	
n-dimensional noncompact complex manifolds	407
Michael Samuel Skaff, Vector valued Orlicz spaces. II	413
James DeWitt Stein, <i>Homomorphisms of B*-algebras</i>	431
Mark Lawrence Teply, <i>Torsionfree injective modules</i>	441
Richard R. Tucker, <i>The</i> δ^2 <i>-process and related topics. II</i>	455
David William Walkup and Roger Jean-Baptiste Robert Wets, Lifting	
projections of convex polyhedra	465
Thomas Paul Whaley, <i>Large sublattices of a lattice</i>	477