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Liouville’s theorem states that in Euclidean space of di-
mension greater than two, every conformal mapping must, by
necessity, be an elementary transformation (i.e., a translation,
a magnification, an orthogonal transformation, a reflection
through reciprocal radii, or a combination of these transforma-
tions), This theorem was proven by R, Nevanlinna under the
additional assumption that the mappings be at least four times
differentiable, We show that a modified version of Nevan-
linna’s proof is still valid when the mappings are assumed to be
only twice differentiable. Our methods are those of Nonstandard
Analysis as developed by A. Robinson,

We begin with a brief introduction to this subject.

1. Nomnstandard Analysis. It is known that there exist proper
extensions of the real numbers which possess the same formal pro-
perties as the real numbers [Robinson [1]). That is, given a formal
mathematical language L in which the algebraic and topological pro-
perties of the real numbers R can be expressed, there will exist a
proper set-theoretical extension *R of R with the following property :
any sentence of L which holds (in the model-theoretic sense) in R
will hold in *R. Then, since we have assumed that the ordered field
axioms which hold in R are expressible in L, *R will be an ordered
field ; whence, it follows that *R is nonarchimedian. Therefore,
there will exist in *R elements o -+ 0 that have the property that
la| < » for all positive » in R. These elements are called infini-
tesimal. If @ — b is an infinitesimal, we shall write a~Db. If
‘0 is regarded as an infinitesimal then it is clear that ““ ~ " is an
additive congruence relation on *R. Because R has the formal pro-
perty ‘‘that for each positive number r there will exist a natural
number 7 so that n > r’’, *R also has this property. Thus since *R
contains infinite numbers (reciprocals of infinitesimals), it follows that
*R has infinite natural numbers. That is, embedded in *R is a proper
set-theoretical extension of *N of N (NN denotes the natural numbers)
which has the same formal properties as N. The numbers in *N — N
are just the infinite natural numbers.

If E, denotes Euclidean space of dimension %, we denote by *FE,,
the natural extension of £, induced by *R. That is, elements of *E,
are ordered mn-tuples of elements of *R. If a = (a, ++-,a,) and b =
(b, -+, b, are elements of *E, then ¢ ~ b means
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V(@ = F o+ (@ — by~ 0

2. If y maps an open neighborhood of the point x in E, into E,,
we say y is differentiable (Frechet differentiable) at x if there exists
a bounded linear operator L mapping from E, into FE, so that

i @ ) — (@) — L) _
]

We will in this case, denote L(k) by v'(k, x). Higher order differentials
can be defined as follows: If & is fixed and f(x) = %'(h, ) then

y'(k, hyx) = [k, @)
YO, ky by @) = 173, k, @), ete.

We will sometimes write y'h, y"kh, y®jkh, or simple ', ¥y’ etc., when
statements about the differential do not depend on particular values
of the arguments. The higher order differentials are symmetric (Nev-
anlinna [2] p. 85). That is, y"'kh = y"hk, y®¥5hk = y hjk = y®hkj,
ete.

3. We now state the Nonstandard theorems concerning continuity
and differentiation which will be needed in this paper :

THEOREM 3.1. Let f be a function defined on a set S in K,
mapping into KE,. Then f is uniformly continwous on S if and only
if f(x) ~ fly) whenever x ~1y for any x and y belonging to *S(*S
denotes the extension in *KE, of S. For instance, i1f S is the sphere
|| < r then *S includes all points a of *E, which satisfy |a| < r.
In this case *S will be a proper extension of S).

For the proof the reader is referred to Robinson |1], p. 111.

THEOREM 3.2. Let S be a closed sphere in F,. Suppose f maps
S into H, and f’ exists and is continuous on S. Then

t

holds for each x in *S, each 'h in FE,, and for each real t in *R
which satisfies t ~ 0, ¢t =+ 0.

Proof. It is not difficult to show that the limit

lim J(@ + th) — f(x) = f(

h, 4
Im , v, )
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exists uniformly on S. This is because f’ exists and is uniformly
continuous on S. But then the result follows based on a theorem
similar to Theorem 4.6.1 (Robinson [1], p. 116).

4. We are now in a position to prove the desired result. Let
S be an open sphere about the origin in E, and suppose y maps S
into E, in a one-to-one manner. Assuming % > 2, y(0) = 0, and that
Yy, ¥y, y® and y“ all exist on S we have:

(4.1) LiouviLLE’sS THEOREM. If y 1is conformal on S, then y 1is
an elementary transformation.

The proof of this theorem is found in Nevanlinna [1]. We sketch
this proof in order to make reference to it in the sequel :
If y is conformal, we have

Y'(h, @) | = M) [ 1]

where Ax) is a real function, Setting p(x) = 1/M(x), it is not difficult
to obtain the equation

(4.2) O'k-y'h + O'hy'k + p-y"hk = 0

whenever . and k are orthogonal. Differentiating (4.2) with respect
to a vector 7 orthogonal to h and k& we have
(4.3) 0"ik-y'h + 0'k-y"3h + 0"jh-y'k + 0'h-y"jk

+ 07-y"hk + 0-y""jhk = 0 .
The sum of the last five terms of (4.3) are symmetric in 7 and % and
hence, the same applies to the first term. We have then,

(4.4) 0"k y'h = 0" hky'] .
But %'k and ¢’ are independent ; hence
o'hk =0

whenever h and k are orthogonal. From this, it follows that for all
h and k, (see Nevanlinna [1], footnote on p. 7)

0"hk = q(h-k) (h-k denotes the innerproduct of % and k),

g a function of x alone. But differentiating once again with respect
to 7, ¢ can be shown to be a constant. We then conclude that

(4.5) o) =ale—xl + 8,

where « and £ are constants (@ = ¢/2) and x, a constant vector. The
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fact that ¥ has an inverse, © = x(y), is used to show that either «
or 5 is zero. When a = 0,

1
"hy2)| = =1|h
[y (h, z) ] Bl l

and when 8 =0
LA

W) =

In either case, it is not difficult to show that y is an elementary

transformation.
Our point is this: the assumption that the third and fourth dif-

ferentials of y exist is used only to derive equation (4.5) from equa-
tion (4.2). We are now going to carry out this derivation without
reference to these differentials. The remainder of our proof will be
identical to Nevanlinna’s and we will not reproduce it here. Hence,
we assume that # > 2, ¥/, y”’ exist and are continuous on S (S denotes
the closure of S) and that y(0) = 0. TUnder these conditions we prove :

4.6. LiouviLLE’S THEOREM. If y is conformal on S then y is an
elementary transformation.
Proof. We begin with (4.2)
o'k-yh + o'h-y'k + 0-y"hk =0
which means that
4.7 (0-ykYh = — pk-y'h

(where (0-y’k)'h denotes the differential of p.y'k with respect to &)
holds when £ is orthogonal to k. Fixing % and k& let

(4.8) F(x) = o(x)-y'(k, @) ,

for « in S. Then since F'’ exists and is continuous on S,
Flo + ah) — Fx) = S‘F'(ah, ® + tah)dt

for a real positive a. Since F” is linear in ah we may divide by a
to obtain

Flo + aZ) — F@) _ Sl F'(h, © + tah)dt .

If we let § be a fixed vector orthogonal to h and % we then have
that
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F(x + ah + aj) — F(z + aj) — F(x + ah) + F(x)

(4.9) -
a
— S‘ F'(h, 2 + aj + tah) — F'(h, 2 + tah) dt
0 a

holds for all  in S.

From the definition of *E,, it will follow that *E, obeys the same
formal properties which hold in FE,. Thus the fact that (4.9) holds
in E, for all positive a in R will imply that (4.9) holds in *E, when
a is a positive infinitesimal in *R. In this case, it is to be understood
that (4.9) holds for all z in *S.

Now making use of the uniform continuity of " on S (and hence,
the uniform continuity of o’ on S) we have by (4.8)

F(x + ah + aj) — F(x + aj) — F(x + ah) + F(x)
az
_ o+ ak + aj) — p(x + aj) — o(x +ah) + o)
aZ

-y'(k, x + ah + aj)

L ot a)) = @) | Yk x+ ah + af) — Yk, @+ af)
a a
n p@ + ah) — o(x) Yk, x + ah + aj) — y'(k, x 4 ah)
a a
+ p(@)- y'k, o+ ah + aj) — Yk, 2 + ah) — y'k, v + aj) + ¥'(k, ®)
aZ

~ L+ ah + af) = p@ag) = p@ + ah) + ) g, )
a
+ 04, ©)-y"(h, k, ) + 0'(h, 2)-4"(J, k, %)
). y'(k, x + ah + aj) — y'(k, ® + ah) — y'(k, z + aj) + y'(k, )
aZ

+ oz

The equivalence above is justified as follows :

o + ah + aj) — (& + aj) — p(& + ah) + o)
aZ
[y (k, ® + ah + aj) — ¥'(k, ®)]

_ (@ + ab + aj) — p(x + aj) — p(x + ak) + o(x)
a

fwm+mhx+mm+ﬁmt
_ <Sl[p’(h, &+ aj + ath) — o'(h, © + ath)]dt)

Sy(h gk, @+ ta(h + §))dt
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~ 0 since | 0'(h, x + aj + ath) — p'(h, x + ath) | ~ 0 by 3.1. And
o@ + aj) — p(x) o + ah) — p(x)
a

~0'(4,%), ~ 0'(h, x)

a

Yk, o + ah + aj) — y'(k, x + aj)
a

~ y"(h, k, 2) by (3.1) and (3.2). Also it follows by (4.7) and (4.8)
that

~y"(h, k, x + aj)

S‘ F'(h, x + aj + tah) — F'(h, x -+ tah) dt
0 a

_gl o'k, x + aj + tah) — o'(k, v + tah)
+J0 a

Y(h,x + aj + ath)dt

—Sl o', v -+ tah)- Y@+ 6l + tah) = y'(h, @ + tak) g,
’ a

~ —y(h, x)'gl o'k, ® + aj + tah) — 0'(k, x + tah) dt
0 a

'—10’(]6’ a;)'y”(jy h’) x) .

This equivalence can be justified by steps similar to those used
before. It follows that from (4.9) we obtain

4.10) L@ +ah+ aj) — o n;zah) — p(z + aj) + o(x) 'k, )
+ 0'(F, @)y (h, k, x) + O'(h, ©)-y" (3, k, @)

+ pay. Y2 + ah + af) — Yk, @ J;Zah> — 'k, @ + aj) + y'(k, x)

+ 0'(k, 2)y"(3, h, )

~ —y'(h, x)-gl o'k, > + aj + tah) — p'(k, x + tah) dt .
0 a

But the left side of the equivalence (4.10) is symmetric with re-
spect to 2 and j and hence this holds also for the right side. We
have

(4.11) y'(h, x)-SL o' (k, & + aj + tah) — p'(k, x + tah) it
0 a

C o N .
~ () x).go o'k, + ah + tacgt) o' (k, x + taj) dt :

and because of the independence of %'h and %’j follows that for all =
in *S
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(4.12) 0 NSL O'(k, & + ah + taj) — o'(k, ® + taj) g
’ a

Instead of differentiating we have *‘ differenced ’’ (4.2) according
to the theory of finite differences and because of the infinitesimal
value of a arrive at (4.12) which is similar to the statement p”hk = 0
and (4.12) would in fact imply p"hk = 0 if we knew p” existed. Thus
noticing that the integral in (4.12) *“ ought ”’ to be p” we ‘* integrate ”’
expecting to obtain o’. Our integration takes the following form :
If w is an infinite natural number, x is in S, and & is chosen so that
x + h is in S then (x + (n/w)h plays the role of x and 1/w the role
of a in (4.12))

ON}_EX; P’(k,x+%h+al)—h+t%1j> —p'<k,x+%h+t—;7) .
@ n=0 jo
[0}
ZSICZﬂ["'(k”” + ok +%h + t%j) — (k@ + Zh+ t%j])dt

~“ o

:SO[p Eyz+ h + t%j) - p’(k,oc + t%j)]dt

~ Ok, @+ b) — 0k, @) .

The first equivalence, above, is obtained as follows: Suppose
@, +++,a, are elements of *F, so that |a;| ~0fori¢ =1, ..., w, where
w is an infinite natural number. Because the sequence |a;| -+, |, |
is ¢ finite >’ with respect to *R, the sequence has a maximum element,
call it |a;|. Hence

|

n=0
’

®
P
n=1

<Lsai<t@la)
w n=1 [()]

S

=|a;| ~ 0. Thus, —1-Zw‘,an~0.
@ n=1

We have shown (since o'(k, z + h) — o'(k, ) is a number in R)
(4.13) o'k, @ + h) — p'(k, ») =0

for each « in S whenever & and % are orthogonal and « + % belongs

to S.
It is not difficult to show that p”hk exists and equals q(k-k), ¢

a real constant. We define

Rlb, by @) = (k& + 1) = p/(h, ) — L2t D2 0002

R is linear in k and R(k, h,x) = 0 when h =k or h-k = 0. Thus
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WL o+ 1) = 0 = L2 D= p0.5) g

for all 2 and k. If j is orthogonal to % then
Ok,x+7+h)—pk,a+35)=p0Fka+3+h)— 0 x+h)

+ p'(k, ) — o'k, ® + 7) + o'k, x + h) — O'(k, %)
= o'k, z + h) — o'k, x)

by (4.18). But then by (4.14)

O'(h,x +J + k) — 0'(h, ® + J) (hok) = O'(h, ¢ + h) — p'(h, ®) (h-k)
heh heh

and thus
Oth,x+3+h)y— 0, x+7)=ph, e+ h)— 0k, .

But j is not related to % and so it must be the case that (referring
to (4.14) again)

(4.15) p'k,x +h+J)— 0k, +7J)=pk,x+ h)— o'k, )
for all , %k and 5. But now
'@+ k+ h)— p@+ h) — p(@ + k) + o(x)

= 0'(k,x + h + tk) — o'(k, x + tk) (applying the mean-value theorem,
0<t<1)=p(k,x + h) — p'(k, z) by (4.15).

This means o'(k, xz + h) — 0'(k, ) is symmetric in % and % and
returning once more to (4.14) we have

O'(h, @ + h) — 0 (h,2) _ Ok &+ k) — 0k, x)
hh kk

for all » and %k, whence

pl(h’y r + h) - P’(h, x)

" = q(%)

which is a real function of z alone. Therefore,
(4.16) o'k, x + h) — O'(k, ®) = qx)(h-k) .
But also

h-h
_ O+ k) — 0'(h %)
heh

qw + k) =

= q(x)
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and hence ¢ is a constant. Thus
0"hk = q(h-k)

and we obtain
2 + 18

for real constants a, 8 (o = ¢/2) and a constant vector x,. But now
we know that v is an elementary function and our proof is complete.
As stated in Nevanlinna [1], whether (4.6) holds assuming only

the existence of y’ remains an open question.

o) = a |z — 2,
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