Pacific Journal of Mathematics

ANALYTIC SHEAF COHOMOLOGY GROUPS OF DIMENSION *n* OF *n*-DIMENSIONAL NONCOMPACT COMPLEX MANIFOLDS

YUM-TONG SIU

Vol. 28, No. 2

April 1969

ANALYTIC SHEAF COHOMOLOGY GROUPS OF DIMENSION *n* OF *n*-DIMENSIONAL NONCOMPACT COMPLEX MANIFOLDS

Yum-Tong Siu

In this paper the following question is considered: if X is a σ -compact noncompact complex manifold of dimension n and \mathscr{F} is a coherent analytic sheaf on X, does $H^n(X, \mathscr{F})$ always vanish? The answer is in the affirmative.

This question was first proposed by Malgrange in [6] and in the same paper he gave the affirmative answer for the special case when \mathcal{T} is locally free.

THEOREM. If X is an n-dimensional σ -compact noncompact complex manifold and \mathscr{F} is a coherent analytic sheaf on X, then $H^n(X, \mathscr{F}) = 0.$

Proof. I. For $0 \leq p \leq n$ let $\mathscr{A}^{(0,p)}$ denote the sheaf of germs of $C^{\infty}(0, p)$ -forms on X and \mathscr{O} denote the structure-sheaf of X. Since at a point in a complex number space the ring of C^{∞} function-germs as a module over the ring of holomorphic function-germs is flat ([7], Ths. 1 and 2 bis), the sequence

obtained by tensoring

$$0 \longrightarrow \mathscr{O} \longrightarrow \mathscr{A}^{(0,0)} \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \mathscr{A}^{(0,n-1)} \xrightarrow{\overline{\partial}} \mathscr{A}^{(0,n)} \longrightarrow 0$$

with \mathcal{F} over \mathcal{O} is exact (cf. [8], Th. 3).

The theorem follows if we can prove that

$$\beta_{X}: \Gamma(X, \mathscr{A}^{(0,n-1)} \bigotimes_{\mathcal{Y}} \mathscr{F}) \longrightarrow \Gamma(X, \mathscr{A}^{(0,n)} \bigotimes_{\mathcal{Y}} \mathscr{F})$$

induced from

$$\bar{\partial}' \colon \mathscr{A}^{(0,n-1)} \bigotimes_{\mathcal{O}} \mathscr{F} \longrightarrow \mathscr{A}^{(0,n)} \bigotimes_{\mathcal{O}} \mathscr{F}$$

is surjective.

II. Suppose $0 \leq p \leq n$ and

 $\mathcal{O}^r \xrightarrow{\phi} \mathcal{O}^s \xrightarrow{\psi} \mathcal{F} \longrightarrow 0$

is an exact sequence of sheaf-homomorphisms on an open subset U of

X which is biholomorphic to an open subset of C^n . Tensoring the sequence with $\mathscr{M}^{(0,p)}$ over \mathscr{O} , we obtain an exact sequence

$$(\mathscr{M}^{(0,p)})^r \xrightarrow{\phi'} (\mathscr{M}^{(0,p)})^s \xrightarrow{\psi'} \mathscr{M}^{(0,p)} \bigotimes_{\sigma} \mathscr{F} \longrightarrow 0$$
.

Since $\operatorname{Im} \phi'$ and $\operatorname{Ker} \phi'$ are fine sheaves,

$$\Gamma(U,(\mathscr{A}^{(0,p)})^r) \stackrel{\widetilde{\phi}}{\longrightarrow} \Gamma(U,\mathscr{A}^{(0,p)})^s) \stackrel{\widetilde{\psi}}{\longrightarrow} \Gamma(U,\mathscr{A}^{(0,p)} \bigotimes_{\mathscr{I}} \mathscr{F}) \longrightarrow 0$$

is exact. $\Gamma(U, (\mathscr{M}^{(0,p)})^s)$ is a Fréchet space if it is given the topology of uniform convergence of derivatives of coefficients on compact subsets. Since $\tilde{\phi}$ is defined by a matrix of holomorphic functions, by paragraph 1 of [7], Im $\tilde{\phi}$ is a closed subspace of $\Gamma(U, (\mathscr{M}^{(0,p)})^s)$ (cf. [8], Th. 5). We give $\Gamma(U, \mathscr{M}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ the quotient topology and it becomes a Fréchet space.

Suppose G is an open subset of X. We can find a countable Stein open cover $\{U_k\}_{k=1}^{\infty}$ of G such that U_k is biholomorphic to an open subset of \mathbb{C}^n and on U_k we have an exact sequence of sheaf-homomorphisms

$$\mathcal{O}^{r_k} \xrightarrow{\phi_k} \mathcal{O}^{s_k} \xrightarrow{\psi_k} \mathcal{F} \longrightarrow 0$$

We give $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ the smallest topology that makes every restriction map $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}) \to \Gamma(U_k, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ continuous. This topology of $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ is independent of the choices of $\{U_k\}, \{\phi_k\}, \text{ and } \{\psi_k\}.$ $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ is a Fréchet space.

$$\beta_{G}\colon \Gamma(G,\mathscr{A}^{(0,n-1)}\bigotimes_{\mathscr{I}}\mathscr{F})\longrightarrow \Gamma(G,\mathscr{A}^{(0,n)}\bigotimes_{\mathscr{I}}\mathscr{F})$$

induced from

$$\bar{\partial}' \colon \mathscr{A}^{(0,n-1)} \bigotimes_{\mathcal{C}} \mathscr{F} \longrightarrow \mathscr{A}^{(0,n)} \bigotimes_{\mathcal{C}} \mathscr{F}$$

is continuous (cf. [8], pp. 21-24).

III. Suppose G is an open subset of X. Denote the strong dual of $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ by $(\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}))^*, 0 \leq p \leq n$. Suppose $T \in (\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}))^*$. The support of T, denoted by Supp T, is defined as the complement in G of the largest open subset H such that, if $a \in \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ and Supp $a \subset H$, then T(a) = 0. Supp T is well-defined, because H exists by partition of unity. Observe that, if $a_k \in \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ and for every compact subset K of $G(\bigcup_{k=m}^{\infty} \operatorname{Supp} a_k) \bigcap K = \varnothing$ for some m depending on K, then $a_k \to 0$ in $\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$. We have:

- (1) If V is a bounded subset of $(\Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}))^*$, then there is a compact subset K of G such that Supp $T \subset K$ for $T \in V$.
 - IV. Suppose G is an open subset of X. Fix

$$T\in (\varGamma(G,\mathscr{M}^{\scriptscriptstyle(0,n)}\bigotimes_{\mathcal{G}}\mathscr{F}))^*$$

and let $\operatorname{Supp} T\beta_G = K$. Let \widehat{K} denote the union of K together with all the components of G - K relatively compact in G. We are going to prove that $\operatorname{Supp} T \subset \widehat{K}$. Let L be a component of G - K not relatively compact in G. We need only prove that $L \cap \operatorname{Supp} T = \emptyset$. Suppose the contrary. Since L is not relatively compact in $G, L \not\subset \operatorname{Supp} T$ (Supp T is compact by (1)). Supp T has a boundary point x_0 in L. We would have a contradiction if we can prove: (2) Every boundary point x of Supp T is a boundary point of

Supp $T\beta_{g}$.

To prove (2) we suppose that x is a boundary point of Supp T and x is not a boundary point of Supp $T\beta_G$. Since Supp $T\beta_G \subset$ Supp T, $x \in X -$ Supp $T\beta_G$. On some connected open neighborhood D of x in X - Supp $T\beta_G$ we have a sheaf-epimorphism $\theta: \mathcal{O}^s \to \mathcal{F}$. Tensoring it with $\mathscr{M}^{(0,p)}$ over \mathcal{O} , we obtain a sheaf-epimorphism $\theta'_p: (\mathscr{M}^{(0,p)})^s \to \mathscr{M}^{(0,p)} \otimes_{\mathcal{O}} \mathcal{F}$. $\tilde{\theta}_p: \Gamma(D, (\mathscr{M}^{(0,p)})^s) \to \Gamma(D, \mathscr{M}^{(0,p)} \otimes_{\mathcal{O}} \mathcal{F})$ induced by θ'_p is surjective.

Let $\{N_k\}_{k=1}^{\infty}$ be a sequence of compact subsets of D such that $N_k \subset \operatorname{Int} N_{k+1}$ and $\bigcup_{k=1}^{\infty} N_k = D$. Let $\Gamma_{N_k}(D, (\mathscr{A}^{(0,p)})^s)$ be the set of all elements of $\Gamma(D, (\mathscr{A}^{(0,p)})^s)$ having supports contained in N_k . Give $\Gamma_{N_k}(D, \mathscr{A}^{(0,p)})^s)$ the topology induced from $\Gamma(D, (\mathscr{A}^{(0,p)})^s)$. Give $\Gamma_*(D, (\mathscr{A}^{(0,p)})^s) = \bigcup_{k=1}^{\infty} \Gamma_{N_k}(D, (\mathscr{A}^{(0,p)})^s)$ the topology as the strict inductive limit of $\{\Gamma_{N_k}(D, \mathscr{A}^{(0,p)})^s\}$. $\Gamma_*(D, (\mathscr{A}^{(0,p)})^s)$ and its topology are independent of the choice of $\{N_k\}$.

For $a \in \Gamma_*(D, (\mathscr{M}^{(0,p)})^s)$, since $\operatorname{Supp} \tilde{\theta}_p(a) \subset D$ is compact, $\tilde{\theta}_p(a)$ can be trivially extended to an element $(\tilde{\theta}_p(a))' \in \Gamma(G, \mathscr{M}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$. The map $\xi_p: \Gamma_*(D, (\mathscr{M}^{(0,p)})^s) \to \Gamma(G, \mathscr{M}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ defined by $\xi_p(a) = (\tilde{\theta}_p(a)))'$ is a continuous linear map.

(3) If $b \in \Gamma(G, \mathscr{M}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ and Supp b is a compact subset of D, then $b \in \operatorname{Im} \xi_p$.

The following diagram is commutative:

Since $\operatorname{Supp}(T\beta_G) \cap D = \emptyset$, $T\xi_n \overline{\delta} = T\beta_G \xi_{n-1} = 0$. $T\xi_n$ can be represented by an s-tuple of distribution-(n, 0)-forms on D (cf. the argument on p. 42, [2]). $T\xi_n \overline{\delta} = 0$ implies that $T\xi_n$ can be represented by an s-tuple of holomorphic (n, 0)-forms on D. Since $\operatorname{Supp} T\xi_n \subset \operatorname{Supp} T$ and $D \not\subset \operatorname{Supp} T$, the s-tuple of holomorphic forms representing $T\xi_n$ must be identically zero. Hence $T\xi_n = 0$. By (3) Supp T is disjoint from all compact subsets of D. x is not a boundary point of Supp T.

Hence (2) is proved. We have:

(4) Supp $T \subset (\text{Supp } T\beta_G)$ for $T \in (\Gamma(G, \mathscr{A}^{(0,n)} \otimes_{\mathscr{O}} \mathscr{F}))^*$. Denote the transpose of β_G by $(\beta_G)^*$. (4) implies that (5) $(\beta_G)^*$ is injective,

because every component of G is noncompact.

V. By Lemma 3, [6], we have:

(6) For every point x of X there is an open neighborhood U of x in X such that $H^{n}(W, \mathscr{F}) = 0$ for every open subset W of U.

Suppose K is a compact subset of X. By (6) we can find two finite collections $\mathfrak{A}, \mathfrak{B} = \{B_k\}_{k=1}^m$ of relatively compact open Stein subsets of X such that (i) both \mathfrak{A} and \mathfrak{B} cover K; (ii) intersections of subcollections of \mathfrak{A} and intersections of subcollections of \mathfrak{B} are Stein; (iii) the closure of any member of \mathfrak{A} is contained in some member of \mathfrak{B} ; and (iv) for any open subset W of any $B_k, 1 \leq k \leq m, H^n(W, \mathscr{F}) = 0$.

Let G and H be respectively the union of all the members of \mathfrak{A} and \mathfrak{B} . Define inductively $G_0 = G$ and $G_k = G_{k-1} \cup B_k, 1 \leq k \leq m$. $H^n(G_k, \mathscr{F}) \to H^n(G_{k-1}, \mathscr{F}) \bigoplus H^n(B_k, \mathscr{F}) \to H^n(G_{k-1} \cap B_k, \mathscr{F})$ is exact (Part a of §17, [1]). $H^n(G_{k-1} \cap B_k, \mathscr{F}) = 0$ implies that the restriction map $H^n(G_k, \mathscr{F}) \to H^n(G_{k-1}, \mathscr{F})$ is surjective for $1 \leq k \leq m$. Since $H = G_m$, the restriction map $H^n(H, \mathscr{F}) \to H^n(G, \mathscr{F})$ is surjective. $H^n(G, \mathscr{F})$ is finite-dimensional (cf. Proof of Th. 11, §17, [1]). Since $H^n(G, \mathscr{F}) \approx \operatorname{Coker} \beta_G$, Im β_G is closed. Im $(\beta_G)^*$ is weakly closed ([5], Préliminaires, §3, Th. 2). Therefore we have:

(7) Every compact subset K of X has an open neighborhood G in X such that $\text{Im}(\beta_{g})^{*}$ is weakly closed.

VI. By (5) and Th. 2, §3, Préliminaires, [5], the theorem follows if we can prove that the intersection of $\operatorname{Im}(\beta_X)^*$ with every weakly compact sebset of $(\Gamma(X, \mathscr{A}^{(0,n-1)} \otimes_{\mathscr{T}} \mathscr{F}))^*$ is weakly compact. Suppose V is a weakly compact subset of $(\Gamma(X, \mathscr{A}^{(0,n-1)} \otimes_{\mathscr{T}} \mathscr{F}))^*$. V is strongly bounded ([3], Th. 3). By (1) there exists a compact subset K of X such that

(8) Supp $S \subset K$ for $S \in V$.

 \hat{K} is compact ([5], Chap. IV, §3, Lemma 3). By (7) there exists an open neighbourhood G of \hat{K} in X such that Im $(\beta_{g})^{*}$ is weakly closed. By (4) and (8) we have:

(9) Supp $T \subset \hat{K}$ if $T \in (\Gamma(X, \mathscr{M}^{(0,n)} \bigotimes_{\mathscr{O}} \mathscr{F}))^*$ and $T\beta_X \in V$.

Let g be a C^{∞} function on G having compact support and being identically one on some neighborhood of \hat{K} . Suppose $0 \leq p \leq n$. Let $\sigma_p: \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}) \to \Gamma(X, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ be defined by trivial extension after multiplication by g. σ_p is continuous. Let $\rho_p: \Gamma(X, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}) \to \Gamma(G, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F})$ be the restriction map. (10) If $R \in (\Gamma(X, \mathscr{A}^{(0,p)} \otimes_{\mathscr{O}} \mathscr{F}))^*$ and $\operatorname{Supp} R \subset \hat{K}$, then $R\sigma_p \rho_p = R$.

To prove that $\operatorname{Im}(\beta_x)^* \cap V$ is weakly compact, it suffices to prove that it is weakly closed. Suppose $\{S_i\}_{i \in I}$ is a net in $\operatorname{Im}(\beta_x)^* \cap V$ converging weakly to $S \in V$. By (8) Supp $S \subset K$. $S_i = T_i \beta_X$ for some $T_i \in (\Gamma(X, \mathscr{N}^{(0,n)} \bigotimes_{\mathscr{O}} \mathscr{F}))^*$. By (9) Supp $T_i \subset \hat{K}$. Supp $T_i \sigma_n \subset \hat{K}$ and Supp $S\sigma_{n-1} \subset \hat{K}$. The following diagram is commutative:

$$\begin{split} \Gamma(X, \mathscr{A}^{(0,n-1)} \bigotimes \mathscr{F}) & \xrightarrow{\beta_X} \Gamma(X, \mathscr{A}^{(0,n)} \bigotimes \mathscr{F}) \\ \rho_{n-1} & \rho_n \\ \Gamma(G, \mathscr{A}^{(0,n-1)} \bigotimes \mathscr{F}) & \xrightarrow{\beta_G} \Gamma(G, \mathscr{A}^{(0,n)} \bigotimes \mathscr{F}) \end{split} .$$

Take $a \in \Gamma(G, \mathscr{A}^{(0,n-1)} \bigotimes_{\mathscr{O}} \mathscr{F})$. Let $b = \sigma_{n-1}(a) \in \Gamma(X, \mathscr{A}^{(0,n-1)} \bigotimes_{\mathscr{O}} \mathscr{F})$. Then $\rho_{n-1}(b) = ga$. Since $\hat{K} \cap \operatorname{Supp} \beta_G(a - ga) = \emptyset$,

$$T_i\sigma_n\beta_G(a) = T_i\sigma_n\beta_G(ga) = T_i\sigma_n\beta_{G_i}\rho_{n-1}(b) = T_i\sigma_n\rho_n\beta_X(b) = T_i\beta_X(b)$$

by (10). Since $\hat{K} \cap \text{Supp}(a - ga) = \emptyset$,

$$S\sigma_{n-1}(a) = S\sigma_{n-1}(ga) = S\sigma_{n-1}\rho_{n-1}(b) = S(b)$$
 .

Since $T_i\beta_X(b) \to S(b)$, $T_i\sigma_n\beta_G(a) \to S\sigma_{n-1}(a)$. Hence $T_i\sigma_n\beta_G \to S\sigma_{n-1}$ in the weak topology of $(\Gamma(G, \mathscr{A}^{(0,n-1)} \otimes_{\mathscr{O}} \mathscr{F}))^*$. Since $\operatorname{Im}(\beta_G)^*$ is weakly closed, there exists $T' \in (\Gamma(G, \mathscr{A}^{(0,n)} \otimes_{\mathscr{O}} \mathscr{F}))^*$ such that $T'\beta_G = S\sigma_{n-1}$. Let $T = T'\rho_n$. Then

$$Teta_{\scriptscriptstyle X} = \, T'
ho_n eta_{\scriptscriptstyle X} = \, T' eta_{\scriptscriptstyle G}
ho_{n-1} = \, S \sigma_{n-1}
ho_{n-1} = S$$
 .

 $S \in \text{Im } (\beta_x)^* \cap V$. Im $(\beta_x)^* \cap V$ is weakly closed.

The author gratefully acknowledges the encouragements and help from Professor Robert C. Gunning.

References

1. A. Andreotti, and H. Grauert, *Théorèmes de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France **90** (1962), 193-259.

2. G. DeRham, Variétés Différentiables, Hermann, Paris, 1955.

3. J. Dieudonné and L. Schwartz, La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier 1 (1950), 61-101.

4. R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1966.

5. B. Malgrange, Existence et approximation des solutions des équations aux dérivée partielles et des équations de convolution, Ann. Inst. Fourier 6 (1955-56), 272-355.

6. _____, Faisceaux sur des variétés analytiques-réeles, Bull. Soc. Math. France 85 (1957), 231-237.

7. _____, Division of distiributions IV, Séminaire Schwartz 4, No. 25 (1959-60).

8. Y.-T. Siu, Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy, Math. Z. 102 (1967), 17-29.

Received November 1, 1967.

UNIVERSITY OF NOTRE DAME NOTRE DAME, INDIANA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN Stanford University Stanford, California J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

K. YOSIDA

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH UNIVERSITY OF CALIFORNIA WASHINGTON STATE UNIVERSITY MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON NEW MEXICO STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY OREGON STATE UNIVERSITY CHEVRON RESEARCH CORPORATION UNIVERSITY OF OREGON OSAKA UNIVERSITY TRW SYSTEMS UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. **36**, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

R. R PHELPS

University of Washington Seattle, Washington 98105

Pacific Journal of Mathematics Vol. 28, No. 2 April, 1969

Richard Arens and Donald George Babbitt, <i>The geometry of relativistic</i> <i>n-particle interactions</i>	243
Kirby Alan Baker, Hypotopological spaces and their embeddings in lattices with Birkhoff interval topology	275
J. Lennart (John) Berggren, Finite groups in which every element is	
conjugate to its inverse	289
Beverly L. Brechner, <i>Homeomorphism groups of dendrons</i>	295
Robert Ray Colby and Edgar Andrews Rutter, QF – 3 <i>rings with zero singular ideal</i>	303
Stephen Daniel Comer, <i>Classes without the amalgamation property</i>	309
Stephen D. Fisher, <i>Bounded approximation by rational functions</i>	319
Robert Gaines, Continuous dependence for two-point boundary value	
problems	327
Bernard Russel Gelbaum, <i>Banach algebra bundles</i>	337
Moses Glasner and Richard Emanuel Katz, <i>Function-theoretic degeneracy</i>	
criteria for Riemannian manifolds	351
Fletcher Gross, <i>Fixed-point-free operator groups of order</i> 8	357
Sav Roman Harasymiv, On approximation by dilations of distributions	363
Cheong Seng Hoo, <i>Nilpotency class of a map and Stasheff's criterion</i>	375
Richard Emanuel Katz, A note on extremal length and modulus	381
H. L. Krall and I. M. Sheffer, <i>Difference equations for some orthogonal</i>	
polynomials	383
Yu-Lee Lee, On the construction of lower radical properties	393
Robert Phillips, <i>Liouville's theorem</i>	397
Yum-Tong Siu, Analytic sheaf cohomology groups of dimension n of	
n-dimensional noncompact complex manifolds	407
Michael Samuel Skaff, Vector valued Orlicz spaces. II	413
James DeWitt Stein, <i>Homomorphisms of B*-algebras</i>	431
Mark Lawrence Teply, <i>Torsionfree injective modules</i>	441
Richard R. Tucker, <i>The</i> δ^2 <i>-process and related topics. II</i>	455
David William Walkup and Roger Jean-Baptiste Robert Wets, Lifting	
projections of convex polyhedra	465
Thomas Paul Whaley, <i>Large sublattices of a lattice</i>	477