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M. S. SKAFF

In this paper properties of linear spaces generated by GN-
functions, which are called vector valued Orlicz spaces, are
studied. The class of GN-functions were introduced and
studied by the author in the paper Vector Valued Orlicz
Spaces, I. This work extends the usual theory of Orlicz spaces
generated by real valued N-functions of a real variable, In
particular, GN-functions are a generalization of the variable
N-functions used by Portnov and the nondecreasing N-functions
by Wang.

This paper is divided into four sections. In §2 the concept of
an Orlicz class and its related Orlicz space will be introduced. Fur-
thermore, a norm is defined. It will be shown that the Orlicz space
is a Banach space relative to this norm. One of the main results of
§ 2 states that every Orlicz class is an Orlicz space if and only if
the GN-function satisfies a generalized 4-condition as defined in Part
Ii7].

The concept of modular convergence is introduced in §3 and
conditions when norm convergence is equivalent to modular convergence
are given. We also give a characterization of the 4-condition in terms
of modulars. In § 4 we generalize some of the basic results involving
conjugate functions. In particular, a generalized Holder inequality is
given and an equivalent norm to that introduced in § 2 is defined. Finally,
we characterize all the continuous linear functions defined on the
Orlicz space under investigation. These theorems generalize the cor-
responding results which can be found in [1, 3, 5].

2. Vector valued Orlicz classes and spaces. Let us begin by
establishing some notation that will be used throughout this paper.
We denote by X the class of all measurable functions

% ai(t) (tin T,1=1, -+, m)

where xi(f) are real valued functions. We will represent the functions
in X by the vector notation

x :a(t) (tin T)

whenever it is convenient to do so. For example, if x, ¥ are functions
in X, and a,b are real numbers, the symbol ax 4 by denotes the
function
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414 M. S. SKAFF

ax + by : ax(t) + by(t) (tin T).

Let us identify all functions # in X which are equal to zero for almost
all ¢ in T. Then we denote by the same symbol, X, the set of
equivalence classes of functions defined by this identification.

Having established this notation, we now define an Orlicz class
for GN-functions.

DEFINITION 2.1. Let M(t, x) be a GN-function. By an Orlicz
class L, we mean the set of all functions x in X for which

(+) Ru(®) = STM(t, B(E))dt < oo .

It is easy to see that L, is a convex set of functions. On the
other hand, L, need not be a vector space in general. The next two
theorems give conditions when L, is linear.

THEOREM 2.1. L, is a vector space if and only tf L, 1is closed
under positive scalar multiplication.

If L, is a vector space, the closure statement is clear. To show
the converse, we first show that if x is in Ly, then — 2 is in L,.
By definition of a GN-function there are constants K >0 and d = 0
such that M(t, x) < KM(t,y) if d<|x|=<|y| (see, [7, Th. 2.2]).
This means, since | — x| = |2 |, that if |z(¢{)| = d and # is in L,, then
— is in L,. Moreover, if d >0, then we know that M(¢t, d) is
integrable over T. Therefore, if |x(tf)| <d and z is in L,, we also
have — @ in L, since M(t, — «(t)) < M(t, d).

Suppose now that @, b are any nonzero real numbers and z, y are
in L,. If ab> 0, then for each ¢ in T we have

2.1.1) axt) + by®) _ _lajx®) . _[b]y(®)

a+b lal + 101 Jal+]b] "

If ab < 0, say a < 0 < b, then

by®) + lal (— o) _ by . lal(= ()
(2.1.2) 5+ |a] b+lal b+l

Since the sum of the coefficients of # and y on the right sides of
(2.1.1) and (2.1.2) is one, the convexity of L, and the fact that — «
is in L, yields that the left sides of these equations are in L.
However, by hypothesis and the fact that either a +b6>0o0r b + |a| >0,
we obtain ax + by in L, proving the theorem.
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THEOREM 2.2. L, is a vector space if and only if M(t, x) satisfies
a d-condition.

Suppose M(t, x) satisfies a J-condition (see, [7, Definition 3.1])
where d(t) = 0. We show that L, is linear. However, according to
Theorem 2.1, it suffices to show that if « is in L,, 2¢ is in L,. Let
2 be in L, and define

x(t) if |x@)] < o)
0 otherwise ,

9(t) = {

x(t) if [«(@)] = o)
0 otherwise .

h(t) = {

This means g, & are in L, and
2.2.1) M(t, 22(t)) = M(¢t, 29(t)) + M(t, 2h(1)) .

Since |A(t)| = () and 2|g(t)| < 26(t), the 4-condition implies that
(2.2.1) reduces to

(2.2.2) M(t, 20(t)) < M(t, 26(t)) + KM(¢, h(t)) .

The right side of (2.2.2) being integrable over T yields the integrability
of M(t, 22(¢t)). This means 2x is in L,.

We now show that if M(¢, ) does not satisfy the d-condition, L,
is not linear. If M(t¢, ) does not satisfy a 4-condition, there exists
a sequence of points {x,} in E* tending to infinity and a set 7, of
finite positive measure such that

(2.2.3) M(t, 2z,) > 2FM(t, »,)

for all ¢ in T, and all £ =1,2,.... Moreover, we can assume by
considering a subsequence of {x,} that M(¢,x,) = 1 for all £ and ¢ in
T,. We will exhibit a function x in L, for which 2x is not in L,.

Let {e,} be any sequence of real numbers such that 0 < e, < 1/2%,
Moreover, we choose a nonoverlapping sequence {7} of closed subsets
of T, such that |T,| = | T,|/2*. The notation | T'| denotes the measure
of T. Since M(t, x) is measurable in ¢ for each x, given e, we can
uniformly approximate M(¢, #,) on a subset S, of T, whose measure
is |T,| — e, by a simple function N,(¢). That is, we can find

N (t) = 35 eilai
where

;lTﬂleH_‘ek
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and y is a characteristic function of set £ such that
| M(t, z) — Nu(®) | = e,

for all ¢ in S,. We now choose disjoint subsets Vi of T} such that
l V];L| = I T.;i I/cki and set Vk == U.; V}:.
Let us define the function # we need by

2, iftisinV, (k=1,2 -.+)
0 otherwise .

x(t) = {
For each & we have

|, M, @t < S [N.(t) + e,]dt

< Slew + 0| Vi = 32t 1y < LD
and
SVkM(t, 23,)dt > 2 SVkM(t, zdt = 2+ 5, [ow — e.]| V|
(2.2.5) >2’°Zﬁc—_——e’°—|T£lz2"ZiT1§!—2kZﬂ—‘cﬂl

> |T0| —2k6k" [T(,Iek.
Therefore, summing (2.2.4) and (2.2.5) over all & yields

STM(t, sH)dt = 3, SVkM(t, z)dt < 3, ‘zk_l‘ oo
and
SM(t 2u(t))dt = 25 M(t, 2x,)dt
>3r -yl -

This proves that « is in L, while 2x is not in L, completing the proof
of the theorem.

Using the results given in the preceding theorems, we define the
linear space we wish to consider in the remainder of this paper.

DEFINITION 2.2. Let M(¢, ) be a GN-function and let L, be its
associated Orlicz class. We call the closure of L, under positive scalar
multiplication a vector valued Orlicz space. It will be denoted by <.
By definition &%, is the set of functions & in X for which there is
some positive constant ¢ such that cx is in &.
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Let us observe that, by Theorem 2.2, L, = &5 whenever the
GN-function M(t, x) satisfies a 4-condition. That is, the Orlicz classes
are linear spaces whenever the GN-function defining them has a
restricted growth condition such as the 4-condition. By the second
part of Theorem 3.2, Part I [7] this means that M(¢, ) does not grow
exponentially along lines which pass through the origin in E" space.
We now introduce a norm for the linear space <7,. It will be defined
in terms of a quasi-norm or g-norm. By a g-norm we mean a real
valued funetion possessing all the usual properties of a norm except
it is only a positive homogeneous function.

THEOREM 2.3. Let M(t, %) be a GN-function and let <7, be defined
as in 2.2, Then

(2.3.1) ||l = max (jj|[*, [| — @)

is a norm for & where

T

(2.3.2) l|&|[* = inf {k >0: S M<t, f%)dt < 1} i

Before proving this theorem let us note that
el =lle|t = —|*

if M(t,x) is an even function of %. That is, if M(¢, x) is a real
valued N-function, then our norm ||«|| reduces to ||z ||* which is the
standard Luxemburg norm. However, when we deal with GN-functions
we no longer retain the property of symmetry relative to the origin
as with real valued N-functions. Therefore, ||#||* may not equal
|| — «{|* and ||« ||* is only a positive homogeneous function.

Suppose «(f) = 0 almost everywhere. Then, by definition of a

GN-function, we haveg M(t, z(t)/k)dt = 0 for all £ > 0, hence ||z]||* =
0. On the other hand,T assume [[x||* = 0. Then, for all £ > 0, we
have R,(x/k) < 1. However, if welet k. =1/m, m =1,2, --- and use
the convexity of M(t, ) we arrive at R,(x) < 1/m for all m. There-
fore, M(t, 2(t)) = 0 for almost all ¢ in 7. This means x(f) = 0 almost
everywhere since M(¢, x) is a GN-function., It is clear that ||z ||* = 0.
The positive homogeneity of ||z ||* follows from the equation

|| ax||* = @ inf {—l;— > 0: STM<t, %(t))lt = 1} =allz|*

for a > 0.
We will complete the proof of Theorem 2.8 by showing that the
triangle inequality is valid. Let us assume z, % are in &%, and a =
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[[efl* >0,b=]|yl|l*t >0. For, if a = b = 0, there is nothing to prove.
Observe first that an application of Fatou’s lemma yields

(t) y(@®)
(2.3.3) STM(t, -a—>dt <1, STM<t, ——b—->dt <1.
From (2.3.3) we obtain, since ||z|| = a, ||¥|| = b,

(2.3.4) SM(t ITSTI )dt <1, SM( , %%-)dt <1

Set ¢ = a + b. Then, by convexity, we have for each ¢ in T

@35 Mt Mi}(—(—tl) = m(t, i@ + %%}%

<2 M<t, x(t)) i M( y;)t)»

c

If we integrate both sides of (2.3.5) over T, we attain using (2.3.3)

e 20000 2 (=0 2 s, MY 1.

c T

That is, ||z +y||* < c=|z||* + ||¥||* proving the theorem.

We have just shown that equation (2.3.1) defines a norm for &,.
We raise the question as to whether the norm is affected by altering
the constant bounding the integral in equation (2.3.2). This is ans-
wered by the next theorem which states that all ¢g-norms obtained by
changing the constants are equivalent.

THEOREM 2.4. Let M(t, x) be a GN-function. Suppose for x in
o we let ||x||F = infk, k in K, where ¢ is a positive real number
and

K, = {k > 0: STM< ,%)dt < c} .

Then, if 0 < ¢ < d, we have

@2.4.1) el <l g%uxrl;.

If d =c¢c >0, then K; contains K, and the first inequality in
(2.4.1) is valid. Moreover, using the convexity of M(¢,z) and the
definition of the g-norm [|z||], we obtain the inequalities
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Il = g o= imt i | (s, SR < 0]
(2.4.2) > inf {k o % STM<t, %t)-)dt < d}

Y

L . 2O Vs < ol = S +
: 1nf{k. SM< ; )dt :c} =L =l
This proves the second inequality of (2.4.1) and the theorem.

3. Modular convergence. We will now introduce a concept of
modular convergence for Orlicz spaces generated by GN-functions.

DEFINITION 3.1. The functional R,(x) when defined on &7, is
called modular if R,(z) is defined as in Definition 2.1(+). We say a
sequence of functions 2,(¢) in &5 is modular convergent to x(t) in
i if

lim Ry (vg'— ) = 0.
K=o

The concept of modular convergence introduced here should not
be confused with the same terminology used in the literature. For
example, the same term is used by Musielak and Orlicz in [4, p. 50]
but with a different meaning.

The next result gives a characterization of the equivalence of
norm and modular convergence in terms of the modular R,(x).

THEOREM 3.1. A necessary and sufficient condition for norm
convergence to be equivalent to modular convergence is that

(3.1.1) lim BR,(x,) = 0 wmplies lim R,(ax,) = 0
k=00 k=co
for all real a.

Suppose the sequence {x,(f)} is modular convergent to zero and
modular convergence is equivalent to norm convergence. That is,
Ry,(x,) — 0 if and only if ||, || — 0 as k — . However, if lim,_..|| 2, || =
0, then lim,_.. || axz,|| = 0 for all real ¢. This, by assumption, means
lim,... By(az,) = 0 for all real a which proves (3.1.1).

Let us observe that norm convergence always implies modular
convergence, For, suppose lim,..,m;, = 0 where m, = ||x,|| and =z, is
in &4,. We can assume m, <1 for all k. Using (2.3.4) and the
convexity of R,(x), we attain
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L Ryw) = Ru(2) =1,
my m,

This means R,(x,) < m, for all k proving the assertion.

Suppose condition (3.1.1) is valid, limy... Ry(x,) = 0, and ||z,( =
a>0 for all k sufficiently large. By (3.1.1) we must have
lim,_.. By(z,/a) = 0. On the other hand, if ||z,|| =a > 0, then the
definition of the norm yields R,(x,/a) > 1 for all sufficiently large k.
This contradiction completes the proof of Theorem 3.1.

We note that condition (3.1.1) holds if and only if

(3.1.2) lim R,(x;) = 0 implies lim B,(ax,) =0
k=oco k=oco

holds for some real @ > 1. This observation is easy to show (see [6,
Th. 12.4]). Moreover, we might suspect that the 4-condition and
condition (3.1.1) or (3.1.2) are related. Indeed, this is the case as
the next two theorems indicate.

THEOREM 3.2. Suppose M(t, x) is a GN-function satisfying a
d-condition and | T| < oo. Then R,(x) satisfies condition (3.1.2).

A result of this type can be found in the paper of Musielak and
Orlicz [4, Th. 2.32(b)] under slightly different conditions. However,
with minor modifications the proof carries over to our assumptions
which involve GN-functions, 4-condition, and the specific modular
R,(x) (see, [6, Th. 12.5]).

Musielak and Orlicz have stated that the converse of Theorem
3.2 does not hold in general when R,(x) is any modular in their sense.
However, we observe that this is not the case when R,(x) is a modular
as defined in 3.1. This is the content of the next theorem.

THEOREM 3.3. If R,(x) ts a modular as defined in 3.1 + which
satisfies (3.1.2), then the GN-function M(t, x) defining R,(x) satisfies
a A-condition.

We will assume that M(¢, ) does not satisfy the ‘4-condition and
exhibit a sequence of functions {x,} for which (3.1.2) does not hold.
If the growth condition is not satisfied, then there exists a sequence
of points {x,} in E* tending to infinity and a set T, of finite positive
measure such that M(¢, 2x,) > 2*M(t, xz,). Let us define the sequences
{ex}, {T,} as in the proof of Theorem 2.2. As in that theorem, given
¢, > 0 we can uniformly approximate M(t, ¢,) on a subset S, of T,
whose measure is | T,| — ¢, by a simple function N,(¢t). That is, we
can find
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N.(t) = Z Crifrt

where

ST =Tl — e = | Si|

such that
| M(t, %) — N(t)| = e

for all ¢t in S,. Given any positive integer m, we choose for each
k=1,2, ..., m disjoint subsets V}, of T} such that
| Vial =L
and set V* = U; Vi .. Moreover, as in Theorem 2.2, we can assume
by considering a subsequence of {x,} that M(¢, =) = 1 for all kand ¢
in T,.
We now define for each m

x, iftisin Vp (k=1,+-+,m)
0 otherwise

Cn(t) = {

For fixed m, we have

(3.3.1) ig Mt w)dt < 3,3, s T | Tl <3 -Lhl
k=1 JVy k=1 =1 -

i Cii m m2
and
f‘,g M(t, 2m)dt > S 2"S _M(t, w,)dt
k=1 Jvg k=1 Vi
(3.3.2) >Sors Ci = 6 iy 5 S 1T
E=1 T Cpi =l m
< 2%e, < | T, |
k-gl m it m2F
However, by definition of z,(f), we know that
(3.3.3) R(z,) = S M, o, @)t = 3 S _M(t, w,)dt
T k=1 Jvy
and

(3.3.4)  R@w,) = STM(t, 2, (t)dt = 3, S Mt 23,)dt .

k=1

If we combine inequalities (3.3.1) through (3.3.4) and take a limit as
m tends to infinity, we find lim,,... R(2%,) > 0 whereas lim,,_., R(z,) = 0.
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This means, by Theorem 3.1, that condition (3.1.2) does not hold for
{z,} proving Theorem 3.3.

Let us conclude this section by noting some important observations.
Let B, be the closure of the set of bounded funections in &3,. The
set of bounded functions is dense in the Orlicz class L, in the sense
of modular convergence if we assume (¢, c) is integrable in ¢ for
each ¢. It follows that the set of bounded functions is dense in
L, = 27, if M(t, x) satisfies a J4-condition and | 7| is finite. For,
modular convergence and norm convergence are equivalent in this case,
This means that B,, = L, = &,.

4. Conjugate functions and linear functionals. In developing
the Orlicz spaces &7, generated by GN-functions M(¢, ) we have not
made use of the concept of a conjugate GN-function. However, if
we wish to investigate the linear functionals defined on &%, we will
need to employ these functions. Conjugate GN-functions M *(t, x) were
defined in Part I of this study and some basic properties were given.

It should be noted from Part I that if M(¢, z) is a GN-function,
M*(t, x) may not be a GN-function. Therefore, unless we further
restrict M(¢, x) we can not define the corresponding conjugate Orlicz
space £y« generated by M*(t, x). It is for this reason we chose to
use the development given in § 2.

Let us introduce some additional notation for this section. Given
a conjugate GN-function M*(t, x) we can define an Orlicz class L.,
as was done in §2, to be all z in X such that

R(2) = STM*(t, o(t)dt < oo .

When we can define a linear space %%,., as in §2, R,.(x) becomes a
modular on ¢7,.. We denote the norm associated with &5. by ||z],
and set Q(x, y) = g x(t)y(t)dt.

Since property T(iv) in the definition of a GN-function may not
hold for M*(t,x), we will assume M(¢, ) is an even function of zx.
In this case M*(¢, ) is an even function x as shown in Theorem 5.2
of Part I. If M*(t, x) is an even function, then we can define the
linear space ..

We now prove a theorem which yields a generalized Holder in-
equality.

THEOREM 4.1. The inequality |Q(x,2)| = 2]/« ||||z]|, holds for
any pair of functions & in L and 2 N L.

If we let # be in &, and 2z in %5 in §5 inequality (++) of
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Part 1 and if we integrate both sides over T, we obtain

sup [Q(r,2)| = R(x) +1.

Ry*(z)s1
Substituting z = x(¢)/|| || into this inequality yields
(4.1.1) | Q(x, 2) | gk 51(1?< 1R, 2)| < 2
for all z such that R,.(2) £ 1. However, when z = 2(¢)/|| 2|/, we have,

by (2.3.4), that R,.(2(?)/]|z|l,) = 1. Substituting this value of z into
(4.1.1) yields

1Q, 2)| = 2{lz|[ 2]l -

We can characterize the class of functions in %5 by introducing
another norm. This norm is equivalent to the Orlicz norm introduced
in § 2. In the next few theorems we define the norm and state some
important properties.

THEOREM 4.2, Suppose x is in 5. Then

sup {Q(x!y)] < oo,
Ry«(#)<1
This theorem is proved in Krasnoselskii and Rutickii (see [3; p.

68]). Although it is proven there for real variable N-functions, the
proof carries over word for word to the class of functions here.

THEOREM 4.3. Let
lfoflo = sup |Q(z,y)]
Ry+(y} =1

where x is in Fy. Then |||, is a norm.
The axioms defining a norm are clearly satisfied by ||z ..
The next theorem states that the gradient of M(%, x),
yz(t):MiM,(ty x(t),&'), (Z:]., 2! "'yn)
belongs to L,. and R,.(y) =< 1.
THEOREM 4.4. Suppose M(t, x) is an even GN-function for which

M(t, ¢) is integrable in t for all ¢ and for which M'(t, x;y) is linear
wny. Then if xis in £ and ||z, £ 1,y is in Ly and Ry(y) =1

where yi(t) = M'(t, x(t); €;) and e; is a basis vector for E*, 1 =1, «--, n.

Observe first that
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[ {lo if Rn)=<1
[ ]|Rys(z) if Ry(z) >1.

The first inequality in (4.4.1) follows by definition of || z|l,. If
R,.(z) > 1, then

441 Q@ 2)| = {

* 2(%) M*(t, 2(2))
M <t’ RM,(z)) = R,.(2)

by convexity of M*(¢, ) in . Therefore, it follows that

RM*( R:‘(z) ) =1

Substituting z = 2(t)/R,+(?) into the first inequality of (4.4.1) produces

the second inequality.
Moreover, let us further observe that if x in <4, is a bounded

function, then ¥ is in L,. where
y'(t) = M'(t, x(t);e), (1=1,2,.-+,m).
For, by convexity, we know that if |«(f)| < d, then

M'(t, 2(t); ) < M(2, x(t) + ;) — M(Z, x(t))
< M(t, x(t) + e) < M(t,d + 1)

for all ¢t =1, -.-,n. This means that there is a constant K such
that |y(t)| < KM(t,d + 1) from which it follows that

(4.4.2) L |yt | dt < KSTM((‘,, d+ 1)dt < o .
Hence, we conclude, using Theorem 5.1, Part I [7] and (4.4.2), thét
Ru(w) = | atudt — | M, w(t)dt
= | st < df 1y dt < .
This means y is in L,..

Suppose now ||z || < 1. We set

w@) it [a@)[=m,

x””(t)z{o it o) >m.

Since z,(t) are bounded functions, by what we have just shown above,
we know the vector y,(t) whose components are M'(¢, x,(t), e;) is in
L,.. Suppose the conclusion of the theorem is false. Then there is
m, such that R,.(y.) > 1. However, by Theorem 5.1, Part I, we
obtain
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M*@t, Yu (D) < MF*(@, Y (8) + M(E, 20, (1)) = Tny(D)Ym(T) -

This means that R,.(y,) < Q®,,, ¥.,) from which it follows, using
(4.4.1), that

1 < Rﬂ[*(ymo) < Q(‘,Umoy ymo) g H x'mo HO RM*(y'rng)
or
Lllem b =llelh=1.

This contradiction proves the theorem.
We will now show that the norm ||« ||, is equivalent to ||« | and
that it characterizes the space 7.

THEOREM 4.5. Under the same assumptions on M(t, 2) as in
Theorem 4.4 we know
(1) lNell=llzl,=2/a],

(i) x 1s in & of and only if |||, < o .

Let y'(t) = M'(t, x(t); e;), 1 = 1, ---, n. Then by Theorem 4.4, we
know R,{y) < 1. Since, according to Theorem 5.1, Part I, it is true
that

y(Ow(t) = M(E, x(t)) + M*(, y¥)) ,
we have
(4.5.1) Ry(x) = Ry(x) + Ry(y) = Qx, y) = |||, .

This means, when « = x(¢)/||« ||, that ||« || < ||2]|,. On the other hand,
by Theorem 4.1, we obtain

[Q, 2) [ = 2[[x ][] 2],

from which we get, whenever » = x(?)/|| z ||, that || 2|, < 2| % || proving
statement (i). If 2 is in .5, then by Theorem 4.2 we have ||z ||, < co.
Conversely, if ||z ||, < o, then using (4.5.1), we arrive at R (z/||z])) <
1. That is, « is in <, which proves (ii) and the theorem.

In the next result a class of linear functionals are defined for
%, and are shown to form a total set. This means, according to a
theorem in Dunford and Schwartz [2; p. 421], that the linear func-
tionals defined on <%, which are continuous in the weak topology
generated by the total set of functionals are precisely the functionals
in the total set. We state the theorem now.

THEOREM 4.6. Let M(t, x) be a GN-function for which M'(t, x; y)
18 a linear function of y. If we set



426 M. S. SKAFF

L(y) = STM%t, x(t); y(t)dt |

then for each x in £, l.(y) 1s a linear functional. Moreover, the
set of linear functionals 1, form a total set.

It is clear that l.(y) is linear in y. Let us assume the set of
functionals [, do not form a total set. Then there is a y %= 0 such
that [,(y) = 0 for all z. By convexity and the fact that [.(y) = 0 for
all * we have that

(461) RM(W +y) = R},(ZIJ)
for all x. Hence, letting ® = x — y in (4.6.1) yields
4.6.2) R,(z) =z By(x — y) .

On the other hand, since I (y) = l.(— y) = 0, inequalities (4.6.1) and
(4.6.2) are valid when y = — y. This means

By(x — y) = By(@) = By(® + ¥)
and, by (4.6.1) and (4.6.2),

By(x + y) = By(v) = By(@ — v)
from which it follows that
(4.6.3) Ry(r + y) = By(2) = Ry(z — )

for all xz. Since I, (ay) = al.(y) = 0 for all real @, equation (4.6.3)
holds replacing ¥ by ay. This means

M@, o(t) + ay(t)) = M(, «(t)) = M(, 2(t) — ay(?))

for almost all ¢ and for all real a. Therefore, M(t, 2(t)) is constant
in the direction ay(f) from x(¢) which contradicts condition (iii) of
Definition 2.1 for GN-functions in Part I. This completes the proof
of the theorem.

Before turning to the characterization of the continuous linear
functionals we wish to establish some notation. When we refer to
the vector valued characteristic function y.(t) we will means that set
function which assumes the vector

if ¢ is in E and zero otherwise, That is, we denote
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xe@) = (@), -+ -, x5 (@)
where
, 1Vn if tisin E
As(t) = .
0 otherwise .
This means | y,(¢)| = 1.

We will prove that under certain restrictions on the GN-function
M(t, x) the form of the continuous linear functionals on &5 is Q(x, ¥)
where = is in %, and y is in .%5.. Let us also denote Q(z,v) by
l,(x). If it is clear that the functional is determined by y we will
sometimes write l(x) in place of l,(z).

By definition of the norm of a linear functional we have

(4.6.4) el = st‘t’llrg)JQ(x, Y.

Moreover, the Holder inequality in Theorem 4.1 yields

(4.6.5) =2yl .

On the other hand, by Theorem 4.5(i) and (4.6.4), we obtain
(4.6.6) 2yl =2yl = dsup [Q@, )| = 412 .

If we combine (4.6.5) and (4.6.6), we achieve the relationship
(4.6.7) el =20yl =401 .

The inequalities (4.6.7) relate the conjugate space &5, and the space
of continuous linear functionals defined by I, (x) = l(z) = Q(z, ¥).

Let us now state and prove the representation theorem for con-
tinuous linear functionals defined on L, = &7,.

THEOREM 4.7. Suppose M(t, x) is an even GN-function satisfy-
ing a d-condition such that M(t, ¢) is integrable in t for each c.
Moreover, suppose M™*'(t, x;y) s linear in y. Then Q(x,y) is the
general form of the continuwous linear functionals defined on 5
where x 1s 1N L and Y 1S N L.

Let us assume |T| < o and that I(x) is any continuous linear
functional on L,. It suffices to consider only L, since M(t, x) satisfies
a J-condition. We can define on the set of all measurable subsets E
of T the set function I(y;). Let us note that y, is in L,.

The set function I(y,) is a countably additive set function. For,
if {E;} is a disjoint sequence of measurable subsets of E and
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E=UE,
it follows that 337, y% (t) = x%(t) for each j =1, ..., n. Therefore,
> % (t) = xu(t). The countable additivity now follows from the
linearity of I(z).
Let us observe also that I(y,) is an absolutely continuous set func-
tion. This follows since

(4.7.1) o) T = U x|
and
(4.7.2) _1,“?1 lxell=0.

Inequality (4.7.1) is obtained from (4.6.4). To see equation (4.7.2)
suppose it is not true. Then there is a constant d > 0 and a sequence
of sets {£;} such that ||y, || = d for all 7 and lim; | E;| = 0. However,
by definition of the norm, if |[y,.|| = d, then

(4.7.3) RO X”é(t))dt >1

for all 7. Moreover, it follows from (4.7.3) that

(4.7.4) 1< g M<t, —(1i—>dt for all 4.
Since M(t, ¢) is integrable in t for each ¢, the integral in (4.7.4) is
an absolutely continuous set function. This means the right side of
(4.7.4) tends to zero as the measure of the sets E; tend to zero. This
contradiction proves (4.7.2).

Let us write x,(t) = 33, %s.:(t) where 3, () = (0, - -+, x&(t), -+ -, 0).
It is clear from the above that I(y,; is an absolutely continuous
countably additive set function. By an application of the Radon-
Nikodym theorem there is a real valued function %‘(¢) in L, such that

(4.7.5) e = | v = | vorma
for each 1 =1, --.-, n. It follows from (4.7.5) that
(4.7.6) ) = 330000 = | wza(trar
where y(t) = (¥'(¢), ---, y"(t)). Moreover, if

(4.7.7) 2(t) = 3 et (b)
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where {£;} are disjoint measurable subsets of 7', then it is easy to see
that (4.7.6) holds if we replace y;(t) by «(¢f). That is, we have for
any simple function x(¢) given by (4.7.7)

(4.7.8) U2) :gTy(t)x(t)dt .

Suppose «z is any function in L,. Then by the remarks at the
end of §3, we know there exists a sequence {z,(¢)} of bounded func-
tions which converges to «(t) almost everywhere such that |x,(f)| <
|x(t)| for each m and R,(x — x,) tends to zero as m approaches
infinity. Moreover, ||®,|| < |/«| for each m and the sequence
{l 2. (£)y(t) |} converges to | x(t)y(t) | almost everywhere. Applying Fatou’s
lemma and (4.7.8), we achieve

1Q(@, 9)| = Tim inf {[.()u(0)| dt

(4.7.9)
= lminf [ L] ffon || = (1L 2] < e,

for any « in L,. This means, if we apply the argument given in
Theorem 5.1, Part I, to <., that y is in &4,.. For, if

zi(t) = M¥(t, yit);e), s=1,---,m,
then
R,.(¥) < Run(y) + Rx) = Qx, y) < oo .

This proves that (4.7.8) holds for all x in L, = <&, and ¥y in ..

Suppose now that T=U, Tn, Tw&E Ty, and | T, | < o« for each
m. Using (4.7.8) restricted to each T, we obtain a sequence of func-
tions {y.(t)} in 4. such that, by (4.7.9), [[Ynllx = |[L], Yn() = Ym+i(D)
if tisin T, and

(4.7.10) (@, = ST Tn()Ynm(t)dt

m

for every function z, in L, which vanishes outside T,. Moreover,
using (4.6.7), we have that ||1,|| < ||!|| and

1lls S 21101 = 25up[L. ]| < 2112
for each m where [, is the functional defined by (4.7.10).

Let y(t) = lim,,— ¥..(t). Then y(t) is defined almost everywhere,
lylle =<2/, and by (4.7.10) we have in the limit

Ua) = ng(wy(t)dt
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where z(t) = lim,... 2,(t) is in <%, and y is in Z,.. This proves the
theorem,
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